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The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions
based on spin-3 gauge fields. One remarkable property is that symplectic gauge fields only have minimal
couplings with gravitational fields and not with any other field of the Standard Model. Interactions with
ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of

symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass
terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly
interacting with ordinary matter are natural candidates for the dark matter component of the Universe.
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I. INTRODUCTION

In the Standard Model all fundamental interactions are
described by gauge theories. In the Einstein theory of
general relativity (GR) the gravitational interaction is also
formulated in terms of a gauge field. Although there are
significant differences between both theories, mainly due to
the strong connection of GR with the structure of space-
time, the fact that both theories are gauge theories helped
to consolidate the gauge paradigm where all fundamental
interactions are described by gauge fields.

The search of new physics beyond the Standard Model is
supported by astrophysical and cosmological evidence of the
existence of a new type of invisible matter with unknown
interacting properties. The search for new types of inter-
actions following the gauge principle suggest exploring the
possibility of gauge theories with higher spin [1,2]. The
pathologies associated to interactions based on massless
particles with helicities higher than 2 [3-5] provided an
argument to explain why these kinds of interaction are not
observed in Nature. Nevertheless, the challenge is so
interesting that there have been numerous attempts to give
aphysical meaning to gauge theories of higher helicity fields.
Free massless fields with arbitrary helicity (or its general-
izations) do exist in any dimension. In fact, Wigner’s theory
of covariant representations of the Poincaré group provides a
general theory of free massless gauge fields [6]. Massless
fields with integer helicity are described by transverse,
symmetric traceless tensor fields with some equivalence
relations which are reminiscent of gauge transformations
[1,2]. The application of Becchi-Rouet-Stora-Tyutin (BRST)
methods to the consistency analysis of generalized gauge
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theories boosted the attempts to extend the analysis of free
massless gauge fields to interacting theories from a new
viewpoint [7-9]. The consistency of the BRST approach
requires an infinite tower of higher helicities [7,9—12] in close
analogy with string theory. However, even in that case it
was impossible to show the consistency of the interacting
theory [7-9,13,14].

The appearance of new string dualities introduced new
approaches based on five-dimensional theories on anti—de
Sitter backgrounds [15-17]. In such a scheme the approach
to higher spin fields acquired a new perspective [18-20].

In this paper we explore a different approach to higher
spin gauge fields based on a gauge theory of symplectic
fields [21]. In this approach gauge fields are symplectic
connections and since their covariant derivatives are non-
trivial only for fields of spin higher than 2, they are
minimally decoupled from the Standard Model physics
and only interact with gravitational fields. This special
characteristic promoted these fields as excellent candidates
for the invisible dark matter component of the Universe.

II. SYMPLECTIC GAUGE FIELDS

Let us consider a symplectic form @ in a four-
dimensional space—time,1 i.e., a regular antisymmetric
tensor field w,, = —w,, which is closed dw = 0. The
symplectic form @ can be considered as the antisymmetric
component of a generalized space-time metric in the sense

"The theory can be generalized for arbitrary even-dimensional
space-times.

© 2015 American Physical Society
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first considered by Forster (formerly known as Bach) and
developed by Schrodinger and Einstein in the context of
unified field theories. It can also be considered as a
background electromagnetic field w,, = 9,4, — J,A, with
nontrivial topological density e"**#w, , @, (x) # 0.

A symplectic gauge field is by definition a linear
connection which preserves the symplectic form; i.e., the
covariant derivative of w,

D, =0, (1)
vanishes. In local coordinates
aywua - anwav + le/wao‘ = 07 (2)

where I, are the local components of the symplectic
gauge field. Although gravitational fields are also defined
in a similar manner as the linear connections that preserve
the space-time metric symmetric g, the contrast between
both types of fields is very important as we will see below.

The gauge symmetry is given by space-time transfor-
mations which leave the symplectic form invariant (sym-
plectomorphisms). They are canonical transformations
whose infinitesimal generators are given in local coordi-
nates by vector fields of the form

5;4 = 8;4¢’ (3)

where ¢ is any scalar field. By using canonical trans-
formations it is always possible to find local coordinates,
Darboux coordinates, where @ becomes a constant form

o= (% 2)

In those coordinates, 8”(0 =0 and

Faa WDay

u = FZywaa- (4)

If we impose the vanishing of the torsion as in the case of
a Levi-Civita metric connection, we have

L, =T (5)

The components of a torsionless symplectic gauge field
in Darboux coordinates

TL//w = qua)am (6)

define a 3-covariant symmetric tensor
Tu/m' = T/wa = Tz/tw = me = Tov;t - To‘/w' (7)

Thus, the space of torsionless symplectic gauge fields
[22-25] can be identified with the space of 3-covariant
symmetric tensors. This space of symplectic gauge fields
is infinite dimensional in contrast with the space of
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Riemannian gauge fields where the Levi-Civita connection
is unique for any Riemannian metric.
The curvature tensor R

Puv?
Rgﬂy = G”F;D — 81,1“;” + F,’jﬁl“l‘j(, - F,‘jﬂl“gﬂ, (8)

defines by contraction with @ a (0,4)-tensor
R(l/)’ﬂzz = w(mRa[)’ﬂl/’ (9)
with interesting symmetry properties:

Ra[}/w = _Raﬁuﬂ = Rﬁa,uw
R(‘Xﬁﬂ”) = R“ﬁ/ﬂ’ + RW‘ﬁll + leaﬁ + Rﬂ/ﬂ’a =0.

The permutation symmetries of this tensor are character-
ized by the Young tableau

[ ]

’

which is in contrast with that of the standard Riemannian
tensor

A symplectic Ricci tensor can also defined by
Rﬂl/ - a)’mRaﬂW, (10)
and is symmetric,

R, =R,, (11)

like the Riemannian Ricci tensor. However, there is no
scalar symplectic curvature because the contraction of the
Ricci tensor with the symplectic form vanishes.

III. SYMPLECTIC FIELD THEORY

The simplest dynamics for symplectic gauge fields is
defined by the action

1
S(F, CU) == goz/d“xRaﬂijaﬂmj

+

5o / d* ¥Ry R = 2R, R, (12)

which only involves the curvature tensors
R = 00 PP ' "V R suy RY=w" 0" R,y (13)

and the symplectic form @. The second term of (12) is
proportional to the Pontryagin class of the manifold which
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has a topological meaning and does not contribute to the
classical dynamics.

The metric independence of (12) implies that the dynamics
of the symplectic fields is completely decoupled from
gravity.

The action (12) is the most general metric independent
action of symplectic fields with quadratic dependence in
the curvature tensor [26]. Although one could add an extra
term proportional to the square of the Ricci tensor (10), it
turns out that such a term is not independent of the other
two terms of the action (12). Thus, the extra term can be
absorbed by shifting the couplings «; and 6.

The theory is invariant under symplectomorphisms, i.e.,
canonical transformations. Symplectic gauge fields, how-
ever, transform as

T//wzr = T/u/a + DﬂDbaO'¢ (14)

under symplectomorphisms, where D, =3, +17,. The
invariance of the action (12) under these transformations
implies the existence of an infinity of zero modes.

The field theory governed by (5) is very interesting from
a geometrical viewpoint [26], but from a quantum field
theory perspective it presents many pathologies. The
Cauchy problem is highly degenerated as indicated by
the existence of many zero modes in quadratic terms which
are not associated to any known gauge symmetry. Apart
from the zero modes associated to the symplectic gauge
symmetry (14), there are nine extra zero modes. The
remaining non-null modes of the quadratic variation of
the action on a trivial 7 = 0 background are of the form

V2o,

3 28 + 3 p (double degenerated)
L2 2 2 + L 2 (non degenerated)
3 P, 3 P, \/gp g >

where p, are the momentum of Fourier modes in Darboux
coordinates. Although the eigenvalues of the quadratic
terms of the action are SO(4) rotation invariant, the
corresponding eigenfunctions 7', are not invariant under
Euclidean or Poincaré transformations. This is due to the
background symplectic form w,,, which introduces a phase
space structure in the space-time which is not compatible
with Euclidean or Poincaré symmetries. Moreover, the
quadratic terms of the action are not definite positive as a
consequence of the symplectic structure. This implies that
the Gaussian projection defines a theory with ghost fields
which is not unitary quantum field theory.

Poincaré symmetry can be recovered if we consider a
generalization of the action where the symplectic form @
becomes a full-fledged dynamical field. A natural choice is
to introduce a kinetic term for the symplectic form

1
@ d4xa)””a)ﬂl,,
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with w,, = d,A, —J,A,. But, because of the identity
o w,, =4 the integrand is constant and there is no
dynamical content as the trivial motion equations indicate.

The only nontrivial possibility is to include terms with
tensorial contractions which involve the space-time metric
(i.e., coupling to gravity). In this framework it is possible
to recover Poincaré invariance in a Minkowskian metric
background.

IV. INTERACTION WITH GRAVITY

Let us consider a different theory of the symplectic gauge
fields interacting with the space-time metric g,

1 ! ]
SoTvw.9) = [ dxvag s ago,.  (15)

Instead of imposing the restriction to the symplectic
gauge fields that preserve the symplectic form w (2), we
introduce the constraint in a softer way via a Lagrange
multiplier term in the action:

1 ] ! /
S6(F, w, g) = m/ d4x\/§gw gml gyy Dy/a)ﬂrb/D},a)ﬂ,,
0

(16)

The strong symplectic condition, D,w,, = 0, is recovered
in the weak coupling limit oy — 0.

The main interaction of symplectic fields with gravity
can be introduced by contracting indices of the curvature
tensor with the space-time metric instead of only using the
symplectic form, e.g.,

Sl (F,a), g) — aZ / d4x\/ﬁgaalgﬁﬂlgﬂﬂ/g””’R(fﬂ/ﬂ/,/Raﬁyu 4+
(17)

However, integration over symplectic forms can generate
new local terms in the effective action and the renormaliz-
ability condition requires us to consider all possible
relevant couplings which do not violate any fundamental
gauge symmetry. Since the symplectic gauge fields generi-
cally do not preserve the space-time metric

Dag;w ?é 07 (18)

marginally relevant terms of the form

S/ T, 0,9) =a? / d4x\/§|Dnggm,|2 + - (19)

should also be considered because there is no symmetry
preventing its appearance as radiative corrections.

In summary, one has to include all renormalizable
possible independent couplings between gravitational field
and the symplectic gauge field. There are only six inde-
pendent types of renormalizable interaction terms
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DDgDDy, DgDgDDg, DgDgDgDg,
RR, RDDyg, RDgDg, (20)

because all others can be expressed as linear combinations
of these terms [21]. However, the different contraction of
the Lorentz indices gives rise to 78 different interaction
terms involving 78 independent dimensionless couplings
ay, ..., a7 twenty-two (o ...ay,) of the type DDg, DDy,
SiX (a3...a03) of the type Dg Dg Dg Dg, and fifty
(ata9...a73) of the type Dg Dg DDg. The complete list of
these terms is given by Egs. (A1)—(A3) in the Appendix.

The corresponding theory is renormalizable. In particu-
lar, the effective action generated by integrating out the
symplectic form @ in the action S; has nontrivial contri-
butions to all 78 a couplings of symplectic fields with
gravity. In fact, these corrections are logarithmically
divergent and the coefficients of the corresponding con-
tributions to the beta functions are displayed in Table I of
the Appendix.

We remark that some of the beta functions are positive
and some others are negative. This means that not all of
them will be relevant in the full-fledged quantum theory.
However, the above calculations have not taken into
account the radiative corrections due to symplectic gauge
field fluctuations. This calculation is beyond the scope of
this paper, but it is crucial to elucidate which couplings of
the theory are finally relevant.

The above calculations show that the symplectic field
theory is a renormalizable quantum field theory; however,
the appearance of fourth-order derivative terms in the action
introduces some ghost components in the symplectic gauge
theory. The absence of a larger gauge symmetry means that
unitary is not guaranteed.
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V. SYMPLECTIC FIELDS AND DARK MATTER

Symplectic gauge fields as linear connections cannot
interact by minimal couplings with scalar fields, because
the minimal coupling in this case reduces to D,¢ = J,¢. A
similar effect arises in the interaction with fermions. The
gauge group of symplectic connections is GL(4,R) and
only the trivial representation of this group acts on spinors;
i.e., there is no analogue of spin connection for symplectic
gauge fields, so Dy = Oy.

Thus, the minimal coupling of symplectic gauge fields to
Standard Model particles can only be possible with gauge
particles: the photon or the intermediate gauge bosons W+
and Z. However, due to the intrinsic gauge character of
these particles this coupling is not possible. The torsionless
character of symplectic gauge fields is responsible for the
decoupling also of vector potentials. Indeed,

F,=0A,-0A,+T7,A,-T7A, =0,A,—0,A,.

(21)

Thus, symplectic gauge fields cannot minimally interact
with any particle of the Standard Model. They can only
minimally couple to gravitation, whenever D, g, # 0. If the
corresponding quanta were massive particles, they will be
natural candidates for the dark matter component of the
Universe and indeed, this is what happens. In the standard
ACDM cosmological model, dark matter is usually
assumed to be fermionic matter. However, a bosonic
component could solve some dark matter puzzles as we
shall discuss below.

However, some nonminimal couplings of symplectic
gauge fields with ordinary matter like ¢Tay¢p g,
|4)|2D D, g", or z/JyDy/DM g" can arise as radiative correc-
tions. However, the genuine interacting terms of symplectic

TABLE I. Beta function coefficients of gravitational o couplings of symplectic gauge fields.

- P e P P
i = -2 o= ﬁg—% o=
P =—5 P2 = 3515 Pz = g%é Pra = Pis = —%
Pie = P =— bis =—s1 Pro = 1950 Pro = 2650
P = % P = 1124820 B3 = 154 P = — 70 Pos = = 1730
P = —5 Prr = =% Pas = 1555 P = ook B0 = 55
P31 = 1555 B = 155 B3 = 513 P = 356 P3s = i
o= =3 o — 14 pu— 2% P po— 18
Pat = — 15365 Pir = =25 Bis = 755 Pas = 15 Bis = =560
Bis = =35 B =—5 Bis = — 7555 B = 13560 Bso = 2555
Bsi = 35w Ps2 = 3exg Pss = 550 Pss = = 15560 Pss = 355
Bse = i35 Ps1 = — 15365 Pss = =78 Pso = 15500 Beo = =3
Bor = & Pe2 = 763 Pos = =255 o=~ Bes = — 530
Pec = ;511;0 Ber = 556 Bes = — 350 Pes =3 B = 565
P = 175235630 P = % Pz = éi Pra = —% Prs = —%
Prs = Fegs P = Prs = 35
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gauge fields with gravitation (20) are invariant under the
signature flip transformation,

9w = 9w (22)

which changes the signature of the metric tensor g,, from
(1,3) to (3,1). This symmetry acts as a custodial symmetry
which prevents the appearance of nonminimal coupling
between ordinary matter and symplectic gauge fields.

Although the coupling of symplectic gauge fields to the
symplectic field w (16) breaks the signature flip symmetry,
the effects of such a symmetry breaking only affect the
couplings between ordinary matter and symplectic gauge
fields via radiative corrections at the two-loop level.

The breaking of signature flip symmetry also affects the
couplings of gravity to symplectic gauge fields via one-
loop corrections. We have assumed until now that these
couplings are dimensionless; however, radiative corrections
generate terms of the form

SIC.09) =55 [ dvaDgul + e 23
Since the metric g is not preserved by symplectic gauge
fields, nothing prevents the appearance of these terms with
mass square dimension. Indeed, such radiative corrections

appear in the form

1
Sifliggs = /d4XDrlg#|D1Dyzgyzvz <489}’1H|gl/1ﬂzgyzl/z

+15—6g”’2¢“"29”'”2 _%ghﬂzgﬂlynglyz)lz’ (24)

of quadratic divergent terms, with

1 d*r
L= ——. 25
2 / (2r)* r? (25)
Thus, such terms must be included in the bare action to
ensure the renormalizability of the theory. Now, in a
Minkowski background (i.e., g,, = 1,,) these terms pro-

vide real mass terms for the spin-3 gauge fields because
then

1 -
~ 4
Higes v / d*x1"°T,,,, (26)

i.e., although symplectic gauge fields were in principle
related to massless particles, they acquire a mass from
quantum radiative corrections in Minkowski space-time
metric backgrounds. The phenomenon is reminiscent of the
Coleman-Weinberg mechanism of generation of mass for
conformal scalar electrodynamics.

The way symplectic gauge fields 7', acquire a mass is
also reminiscent of the Higgs mechanism with the gravi-
tational field playing the role of the Higgs field.

PHYSICAL REVIEW D 92, 103517 (2015)

Conversely, the alternative mechanism where symplectic
fields condensate into a nontrivial value and provide a mass
term for the graviton is also possible but not physically
realistic, because a nontrivial expectation value of such a
field will break Lorentz invariance, which is quite unlikely
to happen. As a consequence, the graviton remains mass-
less but the symplectic fields become massive.

In a similar manner, radiative corrections generate new
interacting terms at the two-loop level involving symplectic
fields and Higgs fields of the form

1
ST 9) = 503 [ dxvldF D+, (@7

which in a Minkowski background provide real mass terms
for the symplectic gauge fields like in Eq. (26):

|U|2 Tuve
Si‘l{iggs ~ m d4XT”D leg, (28)

where v = (¢) is the vacuum expectation value of the
Higgs field. The Higgs contribution to the mass of the
symplectic gauge fields (28) is similar to the mass terms
of the other particles of the Standard Model. The only
difference is that the mass term of symplectic gauge fields
has an extra mass contribution due to radiative corrections
of symplectic fields.

VI. DISCUSSION

The Standard Model sector of the Universe contains a
large variety of particles. It is then imaginable that the dark
matter sector is also made of more than one type of particle.
The characteristics of spin-3 massive gauge particles
associated to symplectic gauge fields suggest that they
are natural candidates as components of dark matter. The
mass of these gauge particles is only dictated by the
coupling to gravitation, which means that generically it
can be large enough to provide a relevant component of
cold dark matter. On the other hand, the bosonic character
of the new particles could explain the smooth behavior of
the central dark matter density in galaxy halos [27-30], and
it could give rise to bosonic condensates which provide
interesting scenarios for dwarf galaxies [31-34].

Since the only primary interaction of symplectic gauge
fields involves gravitational fields, the effect of the new
interaction can be mimicked by a effective theory of
gravitation. The results obtained via integration of sym-
plectic gauge fields yield an effective action which is highly
nonlocal and it will only become local in the infinite
mass limit of symplectic gauge fields. In that case one gets
back the standard gravitational action with extra R? terms.
However, the physical interpretation of the effective theory
is very subtle because the calculation is highly dependent
on the background space-time metric. There are metric
backgrounds where the Higgs mechanism provides a mass
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to symplectic gauge fields, and metric backgrounds without
such a mass generating mechanism. In the latter case, the
symplectic gauge fields contain massless particles. Thus,
the theory provides scenarios which interpolate between
hot and cold dark matter scenarios depending on the
gravitational background. This chameleonic property of
symplectic gauge fields is very attractive and deserves
further exploration.
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APPENDIX: RENORMALIZATION

The 78 independent dimensionless couplings of the
symplectic gauge fields to gravity can be obtained by using
the Tensorial and FeynCalc packages of Mathematica.

There are three different types of terms: 22 of the type
DDg DDg,

Sn= / d*x\/9(D, Dy, 6,0, ) (D, Dy, Gy or ¢ ¢ G717 G772 ap gtV g7 g2 g0 - ay g1 g g2 g R
Fagg g g gt as g g i gTR a1 gnT g o ag gL gTI g R ag g gl g gni
+Hagg gl gnin gt oy g1 gl T grIn g o g g g GRG0ty g1 TR gl g gTRV2 o g3 gt gt 2 gk g
Fapag g g gt £ as gt gt gl gne 4 agag i gt gl gl e agg g gt glin gne g gt gt gn e g

+a19gﬂ172gyly2971ﬂ297172 +a209V172971ﬂlgT]ﬂ29y2y2 +a219ﬂI729yly29717297]ﬂ2 +0229’4]7291/]729711’2‘97[”2]’

6 of the type Dg Dg Dg Dg,

o= [ B0, 1) 0,81 0,1 Dy

(A1)

v v, v 1% 2 v v,
X [a239#273g |}’Zguzllsgv3ﬂ4g}’|ﬂ|g74 4+ a24gﬂ273gﬂ374gl'|72g 2/44gV3 4g7|ﬂ1 + azsgﬂzmgl/lhg 2ﬂ4gJ’|ﬂng3 3974 4

+ azﬁgl/]llz 903#49}’1141 g}’zl’z gJ’3ﬂ3 gJ’4D4 —+ a27gl/1ﬂ2 gvzlls 903144971/41 g}’zh gY4V4 —+ a289V1M2 gl/zll4 gvsl/ag}’lﬂl gJ/zﬂ3 97374] ,

and 50 of the type Dg Dg DDy,

(A2)

S50 = / d*x\/9(Dy, G,) (Dy, Gy ) (D, Dy Gy, ) (a0 27 G372 g2 13 gHIT - 2™ 172 ks gl 1# gavs

—+ a3lgﬂzy3gl/1729”z#3g}’1/4| 9731/3 + a3zgﬂzﬂ3gy|YZgV2D3g71M1 97373 + a33gﬂsv3gv|ﬂzghﬂ| gJ’zl/zQT}}’s —+ a34gl/|ﬂzghﬂ| gJ/zl/zghVagﬁm
+ (1359”3”391/]”2_9”2}'3971”1 g}’zfs + a36gl/1/42902143g}’1/41 97273 973”3 + (1379”1”29'/2”3971”1 9723’3973”3 + a3ggvlllzgvzfsgyll41 g}’zmg}’zl/z
—+ a39gvlﬂ291/273ghﬂ1 g}’2ﬂ3 9731/3 + a4ogl/|llzgl'zl/3 ngﬂ] gJ/zM3gTsJ’3 + a4lgﬂ3vsgl/173gbz}’3 ngMl gth —+ a4zgl/173gl’2ﬂ3g}’1ﬂ1 g)’zﬂzghl/z
+ a43gl42ﬂsgylfagvzyag}’1lll 97273 + a44g}4273gl’173 gl/zl/3g71ﬂ1 ghﬂ} + a4591/173gl/2143g7’1/11 972/42973”3 -+ a469ﬂzﬂ3gU173902U3971l41 97273
+ a47gﬂzf3gbly3g’/2'/3g}’1ﬂ1 972143 + a4ng1M3 gvzlfs gJ’llll 972ﬂ297373 + a49gﬂz}’3 g”ll‘3g”21’3 g]’lﬂl 97273 + asogﬂzfs g”l/‘} 91/21'3 g?llll gJ’z}’s
+ as; g/‘273gylﬂ3g”273g71ﬂ1 ghl/} + aszgﬂlﬂzgﬂ3y3gl/173 gl/zhg}’lh + a“gﬂlﬂzgl/lhgl/zlh 97172973'/3 -+ a54g/4114291/173gyzﬂ3g7’172g73”3
+ assgmmg’/lmgﬂzv,%ghJ’zgfsh + a56gﬂ173gﬂ2ﬂ3 g”173g’/21/3g}’172 + a57gﬂlT3gﬂ273g’/1llsglfzv3gh}’z + asggﬂl}’29!431/391/11/29}’1142973}’3
+ asgg/llhgl/lV2971#2973V3973I43 + a60gﬂ1}’zg/431/391/173 grghte a6lgﬂ17291/173 g giiiz gisvs 4 a629M1729V173gV2/43 gl gtsts
—+ a&gﬂlJ’zgylﬂ3902'/3971/42973}’3 + 0649”11/29”17397‘”297/2”3 9731/3 + a659ﬂ1l/zgl/lysgylﬂzghllsg‘le@ + a66gﬂ1V29V1ﬂ3gylﬂng273973V3
+ a67gll|D2gU1ﬂ3 gJ’]llzg}’z?s gT3l'3 + a6sgﬂlbzgl/|ﬂ3971#2972V3g7373 + a69gﬂ1T3gl/1ﬂ3gl/2bsghﬂzgh?’3 —+ amgﬂ]fs gl/lﬂs g”273ghﬂzghl/3
—+ aﬂgﬂlV}g”1ﬂ3gl/21/3g}’1/429}’273 + a7zg/41}’3gl/1/43gl/273 971/429721/3 + a73g”1”3g”1”3g”273 971M2g7273 + 61749‘/“73 gﬂzl/z gU1V3g}’11/2972ﬂ3
+ a7sg#|ﬂzgl’|J’sgl/zl’3glflf3ghﬂ3 + amgﬂlﬂnglmg”2V3g71T3g}’273 + a77gﬂlﬂzgl/1ﬂ3 91/273971739}’21/3 —+ a7gg”‘”ZQU'T3 g”273g)’1ﬂ3g)’21/3]_

(A3)
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Integration over the symplectic fields w in the action S,
generates logarithmically divergent contributions to all «
couplings. The coefficients of these divergent terms can be
identified with the coefficients of the beta functions of «
couplings displayed in Table 1.

PHYSICAL REVIEW D 92, 103517 (2015)

The fact that no new couplings are generated by one-loop
diagrams points to the renormalizable character of the
theory. The couplings whose beta function coefficients are
listed in Table I are the only dimensionless renormalized
couplings of the theory.
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