61 research outputs found

    A new Eliomys from the Upper Miocene of Spain and its implications for the phylogeny of genus

    Get PDF
    In this paper, we describe a previously unknown species of the glirid Eliomys from the Late Miocene and Early Pliocene Cabriel, Alcoy and Granada basins of southeastern Spain. Eliomys yevesi sp. nov. is characterized by its relative small size, narrow lingual wall and common presence of two centrolophs in the upper molars, and well-developed centrolophids in the lower molars. The new species is the probable ancestor of E. intermedius, which in turn represents the ancestor of the extant E. quercinus. According to its morphologic and biometric features, the origin of E. yevesi sp. nov. is likely to be found in some population of E. truci from the Late Miocene. Based on these affinities, we propose the lineage E. truci–E. yevesi sp. nov.–E. intermedius–E. quercinus, in which there is a trend towards the development of centrolophs, as well as the reduction of accessory crests

    Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region

    Get PDF
    The Last Glacial Termination is marked by changing environmental conditions affected by abrupt and rapid climate oscillations, such as Heinrich Stadial 1 (HS1), which is characterized by extremely low sea surface temperatures (SST) and significant changes in northern hemisphere terrestrial landscape (e.g., vegetation) and human dispersion. Previous studies show that overall cold/dry conditions occurred during HS1, but the lack of high-resolution records precludes whether climate was stable or instead characterized by instability. A high-resolution paleoclimatic record from the Padul wetland (southern Iberian Peninsula), supported by a high-resolution chronology and contrasted with other records from southern Europe and the Mediterranean region, shows 1) that the age boundaries of HS1 in this area occurred at similar to 18.0 kyr BP (median age = 17,970 cal yr BP; mean age = 18,030 +/- 330 cal yr BP) and similar to 15.2 kyr BP (median age = 15,210 cal yr BP; mean age = 15,200 +/- 420 cal yr BP) and 2) that climate during HS1 was non-stationary and centennial-scale variability in moisture is superimposed on this overall cold climatic period. In this study, we improve the pollen sampling resolution with respect to previous studies on the same Padul-15-05 sedimentary core and suggest a novel subdivision of HS1 in 7 sub-phases, including: i) 3 sub-phases (a.1-a.3) during an arid early phase (HS1a; similar to 18.4-17.2 kyr BP), ii) a relatively humid middle phase (HS1b; similar to 17.2-16.9 kyr BP), and iii) 3 sub-phases (c.1-c.3) during an arid late phase (HS1c; similar to 16.9-15.7 kyr BP). This climatic subdivision is regionally supported by SST oscillations from the Mediterranean Sea, suggesting a strong land-sea coupling. A cyclostratigraphic analysis of pollen data between 20 and 11 kyr BP indicates that the climate variability and the proposed subdivisions characterized by similar to 2000 and similar to 800-yr periodicities could be related to solar forcing controlling climate in this area. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Past 200 kyr hydroclimate variability in the western Mediterranean and its connection to the African Humid Periods

    Get PDF
    The Iberian Peninsula is located at the intersection between the subtropical and temperate climate zones and the paleoclimate records from this region are key to elucidate the varying humidity and changing dominance of atmospheric circulation patterns in the Mediterranean-North African region in the past. Here we present a quantitative hydroclimate reconstruction for the last ca. 200 kyr from southern Iberian Peninsula based on pollen data from the Padul lake sediment record. We use the newly developed Scale-normalized Significant Zero crossing (SnSiZer) method to detect not only the statistically significant precipitation changes but also to estimate the relative magnitude of these oscillations in our reconstruction. We identify six statistically significant main humid phases, termed West Mediterranean Humid Periods (WMHP 1-6). These humid periods correlate with other West/Central Mediterranean paleohydrological records, suggesting that similar climatic factors affected different areas of the Mediterranean. In addition, the WMPHs are roughly coeval with the African Humid Periods (AHPs) during high seasonality, suggesting the same North Atlantic ocean-atmospheric dynamics and orbital forcing as main drivers of both areas. In contrast, during low seasonality periods, the West Mediterranean still appears to be affected by the westerlies and the local Mediterranean rainfall systems with moderate-to-high precipitation, whereas West Africa was characterized by droughts.Peer reviewe

    Post-glacial evolution of alpine environments in the western Mediterranean region : The Laguna Seca record

    Get PDF
    In an effort to understand how alpine environments from the western Mediterranean region responded to climate variations since the last glacial-interglacial transition, a detailed chronological control and sedimentological analysis, supported by magnetic susceptibility, total organic carbon and C/N data, were carried out on the sedimentary record of Laguna Seca (LS). This is a latitudinal and altitudinally (2259 masl) key alpine wetland site located in the easternmost area of the Sierra Nevada, southern Iberian Peninsula, where sediments accumulated during Heinrich Stadial 1, Bolling-Allerod (B-A) and the Younger Dryas (YD) previously unrecorded in alpine Sierra Nevada. Climate controlled sedimentation in LS and three coarse-grained and one fine-grained facies association are differentiated, which help us decipher the paleoenvironmental evolution of LS: (1) subaerial cohesionless debris flows during a paraglacial stage; (2) till or nival diamicton during a small glacier/nivation hollow stage; (3) massive mudstone by suspension settling of clays into standing water during a lacustrine stage; and (4) frost-shattering breccia deposited inside the lacustrine stage, probably during the YD, and linked to a periglacial substage. The development of a previously existing small glacial cirque during the Last Glacial Maximum (LGM) in the LS basin at an elevation between 2500 and 2300 m could be supported by the important availability of slope sediments glacially-conditioned such as debris flows, reworked by paraglacial slope processes during the first deglaciation stages, confirming previous studies of landforms in the catchment area and the LGM-Equilibrium Line Altitude estimation above 2400 masl in Sierra Nevada. Mean sediment accumulation rates in the LS sedimentary units (4.21 and 0.28 mm/yr during the paraglacial small glacier/nivation stage and the lacustrine stage, respectively) confirm that geomorphic activity accelerated just after glaciers retreated due to a slope adjustment and high availability of glacially conditioned sediments. An abrupt change in paleoenvironmental and paleoclimatic conditions occurred in LS at ~ 15.7 cal kyr BP. This change was probably due to an increase in temperature and precipitation in the western Mediterranean region during the B-A. At LS, this resulted in significant ice-melt, forming a deep-water lake in LS with important organic matter contribution until the end of the Early Holocene (except in the YD when the lake level probably dropped), but elsewhere a general glacier recession in the Sierra Nevada and an expansion of the Mediterranean forest in the southern Iberian Peninsula. Finally, the general long-term aridification that occurred during the Middle Holocene until the present in the western Mediterranean region triggered an important environmental change transforming LS into an ephemeral wetland with an increase in aquatic productivity.Peer reviewe

    The Holocene Cedrus pollen record from Sierra Nevada (S Spain), a proxy for climate change in N Africa

    Get PDF
    Comprehending the effects of climate variability and disturbance on forested ecosystems is paramount to successfully managing forest environments under future climate scenarios (e.g., global warming, aridi-fication increase). Changes in fossil pollen abundance in sedimentary archives record past vegetation dynamics at regional scales, mainly related to climate changes and, in the last few millennia, to human impact. Pollen records can thus provide long databases with information on how the environment reacted to climate change before the historical record. In this study, we synthesized fossil pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused on Cedrus pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Cedrus pollen has received little attention in the Iberian Peninsula palynological records, for it occurs in low concentrations and has an African source, and thus this article explores the potential to reconstruct its past history and climate. Although Cedrus abundances are generally lower than 1% in the studied pollen samples, a comparison with North African (Moroccan) Cedrus pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. As observed in the Sierra Nevada synthetic record, the increasing trend of Cedrus pollen during the Middle and Late Holocene closely correlates with decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Middle Atlas and Rif Mountains) as well as lower summer evaporation, benefiting the growth of this cool-adapted montane tree species while increasing available moisture during the summer, which is critical for this water-demanding species. Millennial-scale variability also characterizes the Sierra Nevada Cedrus synthetic pollen record. Cedrus abundance oscillations co-vary with well-known millennial-scale climatic variability that controlled cedar abundance and altitudinal distribution in montane areas of N Africa. (C) 2020 Elsevier Ltd. All rights reserved.Peer reviewe

    A palaeoecological approach to understanding the past and present of Sierra Nevada, a Southwestern European biodiversity hotspot

    Get PDF
    Mediterranean mountainous environments are biodiversity hotspots and priority areas in conservation agendas. Although they are fragile and threatened by forecasted global change scenarios, their sensitivity to long-term environmental variability is still understudied. The Sierra Nevada range, located in southern Spain on the north-western European flanks of the Mediterranean basin, is a biodiversity hotspot. Consequently, Sierra Nevada provides an excellent model system to apply a palaeoecological approach to detect vegetation changes, explore the drivers triggering those changes, and how vegetation changes link to the present landscape in such a paradigmatic mountain system. A multi-proxy strategy (magnetic susceptibility, grain size, loss-on-ignition, macroremains, charcoal and palynological analyses) is applied to an 8400-year long lacustrine environmental archive from the Laguna de la Mosca (2889 masl). The long-term ecological data show how the Early Holocene pine forests transitioned towards mixed Pinus-Quercus submediterranean forests as a response to a decrease in seasonality at ~7.3 cal. kyr BP. The mixed Pinus-Quercus submediterranean forests collapsed drastically giving way to open evergreen Quercus formations at ~4.2 cal. kyr BP after a well-known aridity crisis. Under the forecasted northward expansion of the Mediterranean area due to global change-related aridity increase, mountain forests inhabiting territories adjacent to the Mediterranean Region could experience analogous responses to those detected in the Sierra Nevada forests to the Mid to Late Holocene aridification, moving from temperate to submediterranean and then Mediterranean formations

    Millennial-scale cyclical environment and climate variability during the Holocene in the western Mediterranean region deduced from a new multi-proxy analysis from the Padul record (Sierra Nevada, Spain)

    Get PDF
    A high-resolution multi-proxy approach, integrating pollen, inorganic and organic geochemical and sedimentological analyses, has been carried out on the Holocene section of the Padul sedimentary record in the southern Iberian Peninsula reconstructing vegetation, environment and climate throughout the last ~ 11.6 cal kyr BP in the western Mediterranean. The study of the entire Holocene allows us to determine the significant climate shift that occurred during the middle-to-late Holocene transition. The highest occurrence of deciduous forest in the Padul area from ~ 9.5 to 7.6 cal kyr BP represents the Holocene humidity optimum probably due to enhanced winter precipitation during a phase of highest seasonal anomaly and maximum summer insolation. Locally, insolation maxima induced high evaporation, counterbalancing the effect of relatively high precipitation, and triggered very low water table in Padul and the deposition of peat sediments. A transitional environmental change towards more regional aridity occurred from ~ 7.6 to 4.7 cal kyr BP and then aridification enhanced in the late Holocene most likely related to decreasing summer insolation. This translated into higher water levels and a sedimentary change at ~ 4.7 cal kyr BP in the Padul wetland, probably related to reduced evaporation during summer in response to decreased in seasonality. Millennial-scale variability is superimposed on the Holocene long-term trends. The Mediterranean forest regional climate proxy studied here shows significant cold-arid events around ~ 9.6, 8.5, 7.5, 6.5 and 5.4 cal kyr BP with cyclical periodicities (~1100 and 2100 yr) during the early and middle Holocene. A change is observed in the periodicity of these cold-arid events towards ~1430 yr in the late Holocene, with forest declines around ~ 4.7–4, 2.7 and 1.3 cal kyr BP. The comparison between the Padul-15-05 data with published North Atlantic and Mediterranean paleoclimate records suggests common triggers for the observed climate variability, with the early and middle Holocene forest declines at least partially controlled by external forcing (i.e. solar activity) and the late Holocene variability associated with internal mechanisms (oceanic-atmospheric)

    Climatic control on the Holocene hydrology of a playa-lake system in the western Mediterranean

    Get PDF
    Evaporitic lakes such as playa-lakes are characteristic of many arid regions and are unique environments with respect to fauna and flora, while being very vulnerable to climate and environmental fluctuations and threatened by the current global change scenario. Water balance oscillations in these systems can trigger the precipitation or dissolution of different evaporitic minerals, negatively impacting local biodiversity and economic activities. Here, we study the sedimentary record of a small saline pond from a playa-lake complex in southwestern Iberia in order to reconstruct the paleohydrological evolution of this area and assess potential anthropogenic disturbances. The different proxies studied in the-11.9 ky old sedimentary record of the Laguna de la Ballestera suggest that the greatest lake extension and the highest water levels occurred during the Early Holocene, pointing to the wettest period of the record. Climate transitioned towards more arid conditions during the Middle Holocene, and even more dramatically during the Late Holocene. In this last stage the wetland surface and the water level largely diminished and gypsum precipitation gradually increased pointing towards a negative precipitation/ evapotranspiration balance and lowest water levels. Summer desiccation likely occurred under this scenario, especially after-1.0-0.9 cal ky BP coeval with the Medieval Climate Anomaly, when gypsum content started to rise abruptly. However, this significant gypsum precipitation was only associated with a massive drop in the siliciclastic content and scarce carbonates (dolomite and calcite) during the last-400 years. This evidence suggests a shift from a (semi) permanent to a temporal/seasonal hydrological regime. The environmental evolution of this wetland responded to the general climatic evolution of the western Mediterranean during the Holocene, being mostly controlled by changes in insolation. Our data also show that the environmental response of the studied wetland to natural climate variations was only significantly disturbed by human activities since the 20th century, especially in the second half of the century, deduced by abrupt fluctuations in the siliciclastic, gypsum and organic content in the sediments, as well as by the enhanced sedimentary accumulation rates, probably as a response to changes in the hydroperiod of the lake and in the catchment land use.Peer reviewe

    Paleohydrological dynamics in the Western Mediterranean during the last glacial cycle

    Get PDF
    The transitional regions between the low and high latitudes of the Northern Hemisphere are highly vulnerable to future climate change yet most of the current climate models usually diverge in their projections. To better understand the dynamics in these regions, the reconstruction of past hydrological fluctuations and precipitation patterns is of paramount importance to accurately constrain present and future climate scenarios. In this study, we investigated paleohydrological dynamics in the western Mediterranean region, a transitional zone between low-mid latitudes and Atlantic - Mediterranean realms. We reconstruct precipitation and moisture source changes during the last -35 ka in order to propose the potential mechanisms driving these oscillations. To do so, we use hydrogen isotopes from sedimentary leaf waxes, more specifically the C31 n-alkane homologue, and a precipitation proxy based on previously published pollen data from a sedimentary core (Padul-15-05) in southern Iberia (Padul wetland -37-N). With this combination we disentangle the coupled effect of precipitation amount and source on the hydrogen isotopic signature of the studied C31 n-alkane record. Our results show three main periods characterized by different precipitation patterns. Low precipitation, mainly linked to a significant contribution from an isotopically-enriched Mediterranean precipitation source, occurred from -30 to -15.5 ka BP and during the last -5 ka, whereas enhanced precipitation with a predominant isotopically-depleted Atlantic precipitation source prevailed from -15.5 to -5 ka BP. This latter stage is here defined as the Western Mediterranean Humid Period (WMHP). In addition, some occasional millennial-scale opposite precipitation patterns can be observed during these climatically distinct periods. These changes in the source of precipitation were likely coupled to a shift in the main rainy season from winter, when Atlantic precipitation prevailed, to late winter-early spring, when the contribution of Mediterranean moisture is higher. Comparison between the studied mid-latitude terrestrial Padul-15-05 core and a low-latitude marine record offshore of northwestern Africa shows clear long-term synchronous responses of both western Mediterranean precipitation and western African monsoon systems to northern Hemisphere atmospheric dynamics, ultimately controlled by orbital forcing and ice-sheets fluctuations.Peer reviewe

    Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period

    Get PDF
    Alpine ecosystems of the southern Iberian Peninsula are among the most vulnerable and the first to respond to modern climate change in southwestern Europe. While major environmental shifts have occurred over the last similar to 1500 years in these alpine ecosystems, only changes in the recent centuries have led to abrupt environmental responses, but factors imposing the strongest stress have been unclear until now. To understand these environmental responses, this study, for the first time, has calibrated an algal lipid-derived temperature proxy (based on long-chain alkyl diols) to instrumental historical data extending alpine temperature reconstructions to 1500 years before present. These novel results highlight the enhanced effect of greenhouse gases on alpine temperatures during the last similar to 200 years and the long-term modulating role of solar forcing. This study also shows that the warming rate during the 20th century (similar to 0.18 degrees C per decade) was double that of the last stages of the Little Ice Age (similar to 0.09 degrees C per decade), even exceeding temperature trends of the high-altitude Alps during the 20th century. As a consequence, temperature exceeded the preindustrial record in the 1950s, and it has been one of the major forcing processes of the recent enhanced change in these alpine ecosystems from southern Iberia since then. Nevertheless, other factors reducing the snow and ice albedo (e.g., atmospheric deposition) may have influenced local glacier loss, since almost steady climate conditions predominated from the middle 19th century to the first decades of the 20th century.Peer reviewe
    • …
    corecore