32 research outputs found

    Mother-to-child transmission of human immunodeficiency virus in aten years period

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>to evaluate mother-to-child transmission (MTCT) rates and related factors in HIV-infected pregnant women from a tertiary hospital between 2000 and 2009.</p> <p>Subjects and method</p> <p>cohort of 452 HIV-infected pregnant women and their newborns. Data was collected from recorded files and undiagnosed children were enrolled for investigation. Statistical analysis: qui-square test, Fisher exact test, Student <it>t </it>test, Mann-Whitney test, ANOVA, risk ratio and confidence intervals.</p> <p>Results</p> <p>MTCT occurred in 3.74%. The study population displayed a mean age of 27 years; 86.5% were found to have acquired HIV through sexual contact; 55% were aware of the diagnosis prior to the pregnancy; 62% were not using HAART. Mean CD4 cell-count was 474 cells/ml and 70.3% had undetectable viral loads in the third trimester. HAART included nevirapine in 35% of cases and protease inhibitors in 55%; Zidovudine monotherapy was used in 7.3%. Mean gestational age at delivery was 37.2 weeks and in 92% by caesarian section; 97.2% received intravenous zidovudine. Use of AZT to newborn occurred in 100% of them. Factors identified as associated to MTCT were: low CD4 cell counts, elevated viral loads, maternal AIDS, shorter periods receiving HAART, other conditions (anemia, IUGR (intra uterine growth restriction), oligohydramnium), coinfecctions (CMV and toxoplasmosis) and the occurrence of labor. Use of HAART for longer periods, caesarian and oral zidovudine for the newborns were associated with a decreased risk. Poor adhesion to treatment was present in 13 of the 15 cases of transmission; in 7, coinfecctions were diagnosed (CMV and toxoplasmosis).</p> <p>Conclusion</p> <p>Use of HAART and caesarian delivery are protective factors for mother-to-child transmission of HIV. Maternal coinfecctions and other conditions were risk factors for MTCT.</p

    Streptococcal M1 protein triggers chemokine formation, neutrophil infiltration, and lung injury in an NFAT-dependent manner.

    No full text
    Streptococcus pyogenes of the M1 serotype can cause STSS, which is associated with significant morbidity and mortality. The purpose of the present study was to examine the role of NFAT signaling in M1 protein-induced lung injury. NFAT-luc mice were treated with the NFAT inhibitor A-285222 before administration of the M1 protein. Neutrophil infiltration, edema, and CXC chemokines were quantified in the lung, 4 h after challenge with the M1 protein. Flow cytometry was used to determine Mac-1 expression. Challenge with the M1 protein increased NFAT-dependent transcriptional activity in the lung, spleen, and liver in NFAT-luc mice. Administration of the NFAT inhibitor A-285222 abolished M1 protein-evoked NFAT activation in the lung, spleen, and liver. M1 protein challenge induced neutrophil recruitment, edema, and CXC chemokine production in the lung, as well as up-regulation of Mac-1 on circulating neutrophils. Inhibition of NFAT activity attenuated M1 protein-induced neutrophil infiltration by 77% and edema formation by 50% in the lung. Moreover, administration of A-285222 reduced M1 protein-evoked pulmonary formation of CXC chemokine >80%. In addition, NFAT inhibition decreased M1 protein-triggered Mac-1 up-regulation on neutrophils. These findings indicate that NFAT signaling controls pulmonary infiltration of neutrophils in response to streptococcal M1 protein via formation of CXC chemokines and neutrophil expression of Mac-1. Thus, the targeting of NFAT activity might be a useful way to ameliorate lung injury in streptococcal infections

    Gastric bypass improves ss-cell function and increases β-cell mass in a porcine model.

    No full text
    The most frequently used, and effective, treatment for morbid obesity is Roux-en-Y gastric bypass surgery (RYGB), which results in rapid remission of T2D in most cases. To what extent this is accounted for by weight loss or other factors remains elusive. To gain insight into these mechanisms, we investigated the effects of RYGB on ß-cell function and ß-cell mass in the pig, a species highly reminiscent of the human. RYGB was performed using linear staplers during open surgery. Sham-operated pigs were used as controls. Both groups were fed a low calorie diet for 3 weeks after surgery. Intravenous glucose-tolerance tests were performed 2 weeks after surgery. Body weight in RYGB-pigs and sham-operated, pair-fed control pigs developed similarly. RYGB-pigs displayed improved glycaemic control, which was attributed to increases in ß-cell mass, islet number and number of extra-islet ß-cells. Pancreatic expression of insulin and glucagon was elevated, and cells expressing the GLP-1-receptor were more abundant in RYGB-pigs. Our data from a pig model of RYGB emphasize the key role of improved ß-cell function and ß-cell mass to explain the improved glucose tolerance after RYGB as food intake and body weight remained identical

    Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney.

    No full text
    Diabetic kidney disease is the leading cause of end-stage renal disease. Genetic factors have been suggested to contribute to its susceptibility. However, results from genetic studies are disappointing possibly because the role of glucose in diabetic kidney disease predisposed by epigenetic mechanisms has not been taken into account. Since thioredoxin-interacting protein (TXNIP) has been shown to play an important role in the pathogenesis of diabetic kidney disease, we tested whether glucose could induce expression of TXNIP in the kidney by epigenetic mechanisms. In kidneys from diabetic Sur1-E1506K(+/+) mice, hyperglycemia-induced Txnip expression was associated with stimulation of activating histone marks H3K9ac, H3K4me3, and H3K4me1, as well as decrease in the repressive histone mark H3K27me3 at the promoter region of the gene. Glucose also coordinated changes in histone marks and TXNIP gene expression in mouse SV40 MES13 mesangial cells and the normal human mesangial cell line NHMC. The involvement of histone acetylation in glucose-stimulated TXNIP expression was confirmed by reversing or enhancing acetylation using the histone acetyltransferase p300 inhibitor C646 or the histone deacetylase inhibitor trichostatin A. Thus, glucose is a potent inducer of histone modifications, which could drive expression of proinflammatory genes and thereby predispose to diabetic kidney disease

    The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model

    Get PDF
    Background A growing body of literature on Roux-en-Y gastric bypass surgery (RYGB) has generated inconclusive results on the mechanism underlying the beneficial effects on weight loss and glycaemia, partially due to the problems of designing clinical studies with the appropriate controls. Moreover, RYGB is only performed in obese individuals, in whom metabolism is perturbed and not completely understood. Methods In an attempt to isolate the effects of RYGB and its effects on normal metabolism, we investigated the effect of RYGB in lean pigs, using sham-operated pair-fed pigs as controls. Two weeks post-surgery, pigs were subjected to an intravenous glucose tolerance test (IVGTT) and circulating metabolites, hormones and lipids measured. Bile acid composition was profiled after extraction from blood, faeces and the gallbladder. Results A similar weight development in both groups of pigs validated our experimental model. Despite similar changes in fasting insulin, RYGB-pigs had lower fasting glucose levels. During an IVGTT RYGB-pigs had higher insulin and lower glucose levels. VLDL and IDL were lower in RYGB- than in sham-pigs. RYGB-pigs had increased levels of most amino acids, including branched-chain amino acids, but these were more efficiently suppressed by glucose. Levels of bile acids in the gallbladder were higher, whereas plasma and faecal bile acid levels were lower in RYGB- than in sham-pigs. Conclusion In a lean model RYGB caused lower plasma lipid and bile acid levels, which were compensated for by increased plasma amino acids, suggesting a switch from lipid to protein metabolism during fasting in the immediate postoperative period

    Antinociceptive effects of the aqueous extract of Brugmansia suaveolens flowers in mice

    No full text
    The infusion of Brugmansia suaveolens, popularly known as trombeteira or cartucheira, has been used to treat pain in Brazil. The present study was conducted to test for its antinociceptive effects using the abdominal-writhing, formalin, tail-flick, and hotplate tests in mice. The aqueous extract from B. suaveolens flowers administered intraperitoneally at doses of 100 and 300 mg/kg body weight significantly inhibited acetic acid–induced abdominal constrictions. An increase in hot-plate latency was also observed in animals receiving both doses (100 and 300 mg/kg). In the formalin test, both doses from the aqueous extract inhibited the first (0-5 min) and second phase (20-25 min). Tail-flick assays demonstrated that treatment of animals with plant extract induced attenuation of the response. These results suggest that the aqueous extract from B. suaveolens flowers produced antinociceptive effects, as demonstrated in the experimental models of nociception in mice. This supports popular medicinal uses of this plant as an analgesic

    Inhibition of nuclear factor of activated T-cells (NFAT) suppresses accelerated atherosclerosis in diabetic mice.

    Get PDF
    Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis

    Inhibition of NFAT signaling restores microvascular endothelial function in diabetic mice

    No full text
    Central to the development of diabetic macro- and microvascular disease is endothelial dysfunction, which appears well before any clinical sign but, importantly, is potentially reversible. We previously demonstrated that hyperglycemia activates nuclear factor of activated T cells (NFAT) in conduit and medium-sized resistance arteries and that NFAT blockade abolishes diabetes-driven aggravation of atherosclerosis. In this study, we test whether NFAT plays a role in the development of endothelial dysfunction in diabetes. NFAT-dependent transcriptional activity was elevated in skin microvessels of diabetic Akita (Ins21/2) mice when compared with nondiabetic littermates. Treatment of diabetic mice with the NFAT blocker A-285222 reduced NFATc3 nuclear accumulation and NFAT-luciferase transcriptional activity in skin microvessels, resulting in improved microvascular function, as assessed by laser Doppler imaging and iontophoresis of acetylcholine and localized heating. This improvement was abolished by pretreatment with the nitric oxide (NO) synthase inhibitor L-NGnitro-L-arginine methyl ester, while iontophoresis of the NO donor sodium nitroprusside eliminated the observed differences. A-285222 treatment enhanced dermis endothelial NO synthase expression and plasma NO levels of diabetic mice. It also prevented induction of inflammatory cytokines interleukin-6 and osteopontin, lowered plasma endothelin-1 and blood pressure, and improved mouse survival without affecting blood glucose. In vivo inhibition of NFAT may represent a novel therapeutic modality to preserve endothelial function in diabetes
    corecore