20 research outputs found

    Impact of metal-organic vapor phase epitaxy environment on silicon bulk lifetime for III–V-on-Si multijunction solar cells

    Get PDF
    With the final goal of integrating III-V materials on silicon substrates for tandem solar cells, the influence of the Metal-Organic Vapor Phase Epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. An important degradation of minority carrier lifetime during the surface preparation (i.e. H2 anneal) has been observed. Three different mechanisms have been proposed for explaining this behavior: 1) the introduction of extrinsic impurities coming from the reactor; 2) the activation of intrinsic lifetime killing impurities coming from the wafer itself; and finally, 3) the formation of crystal defects, which eventually become recombination centers. The effect of the emitter formation by phosphorus diffusion has also been evaluated. In this sense, it has been reported that lifetime can be recovered during the emitter formation either by the effect of the P on extracting impurities, or by the role of the atomic hydrogen on passivating the defects

    Assessment of rear-surface processing strategies for III-V on Si multijunction solar cells based on numerical simulations

    Get PDF
    The manufacturing of high-efficiency III-V on Si multijunction solar cells needs the development of hybrid, i.e., adapted to both families of materials, solar cell processing techniques, able to extract the full photovoltaic potential of both the subcells. This fact especially impacts the processing of the silicon rear surface of the tandem, which cannot receive treatments commonly used in the single-junction Si solar cell industry [Al-back surface field (BSF), thermal SiO2, and so on], since these would result in an excessive thermal load that would deteriorate the III-V upper layers (top cell, tunnel junction, and buffer layer). However, the Si bottom cell requires an advanced design with good rear passivation, a good ohmic contact, and good carrier selectivity, so that its contribution to the efficiency of the tandem is maximized. Accordingly, in this paper, several low-temperature compatible rear-surface passivation techniques for the Si bottom subcell in a monolithic III-V/Si tandem solar cell are explored. In particular, aluminum BSFs, passivated emitter and rear cell (PERC)-like architecture, passivated emitter and rear locally diffused (PERL)-like architecture formed with low thermal loads, and heterojunction with intrinsic thin layer (HIT)-like processes are assessed using numerical simulations, and a comparison of the Si bottom cell performance for the mentioned alternatives in a GaAsP/Si dual-junction solar cell is presented

    Optimizing diffusion, morphology and minority carrier lifetime in silicon for GaAsP/Si dual-junction solar cells

    Get PDF
    Dual-junction solar cells formed by a GaAsP cell on a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic applications. In this study, we analyze several factors for the optimization of the bottom cell, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the growth of a high quality GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties

    Optimizing Bottom Subcells for III-V-on-Si MultiJunction Solar Cells

    Get PDF
    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. Such integration would offer a cost breakthrough for photovoltaic technology, unifying the low cost of silicon and the efficiency potential of III-V multijunction solar cells. In this study, we analyze several factors influencing the performance of the bottom subcell of this dual-junction, namely, 1) the formation of the emitter as a result of the phosphorus diffusion that takes place during the prenucleation temperature ramp and during the growth of the III-V layers; 2) the degradation in surface morphology during diffusion; and 3) the quality needed for the passivation provided by the GaP layer on the emitter

    Status of Ultra-High Concentrator Multijunction Solar Cell Development at IES-UPM.

    Get PDF
    After the successful implementation of a record performing dual-junction solar cell at ultra high concentration, in this paper we present the optimization of key aspects in the transition to a triple-junction device, namely the hetero nucleation of III-V structures onto germanium substrates. This optimization is based on in-situ RAS measurements during the MOVPE growth of the triple-junction solar cell structure and subsequent AFM analysis. The correlation between RAS and AFM allows detecting which RAS features correlate with good morphology and low RMS roughness. TEM analysis confirms that the quality of the triple-junction structures grown is good, revealing no trace of antiphase disorder, and showing flat, sharp and clear interfaces. Triple-junction solar cells manufactured on these structures have shown a peak efficiency of 36.2% at 700X, maintaining an efficiency over 35% from 300 to 1200 suns

    Optimization of the silicon subcell for III-V on silicon multijunction solar cells: key differences with conventional silicon technology

    Get PDF
    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties

    Optimization of the secondary electron yield of laser-structured copper surfaces at room and cryogenic temperature

    Get PDF
    Electron cloud (e-cloud) mitigation is an essential requirement for proton circular accelerators in order to guarantee beam stability at a high intensity and limit the heat load on cryogenic sections. Laser-engineered surface structuring is considered a credible process to reduce the secondary electron yield (SEY) of the surfaces facing the beam, thus suppressing the e-cloud phenomenon within the high luminosity upgrade of the LHC collider at CERN (HL-LHC). In this study, the SEY of Cu samples with different oxidation states, obtained either through laser treatment in air or in different gas atmospheres or via thermal annealing, has been measured at room and cryogenic temperatures and correlated with the surface composition measured by x-ray photoelectron spectroscopy. It was observed that samples treated in nitrogen display the lowest and more stable SEY values, correlated with the lower surface oxidation. In addition, the surface oxide layer of air-treated samples charges upon electron exposure at a low temperature, leading to fluctuations in the SEY

    Integration of III-V materials on Silicon Substrates for Multi-junction Solar Cell Applications

    Full text link
    The work presented here aims to reduce the cost of multijunction solar cell technology by developing ways to manufacture them on cheap substrates such as silicon. In particular, our main objective is the growth of III-V semiconductors on silicon substrates for photovoltaic applications. The goal is to create a GaAsP/Si virtual substrates onto which other III-V cells could be integrated with an interesting efficiency potential. This technology involves several challenges due to the difficulty of growing III-V materials on silicon. In this paper, our first work done aimed at developing such structure is presented. It was focused on the development of phosphorus diffusion models on silicon and on the preparation of an optimal silicon surface to grow on it III-V materials

    Evolution of the silicon bottom cell photovoltaic behavior during III-V on Si multi-junction solar cells production

    Get PDF
    The evolution of the Si bulk minority carrier lifetime during the heteroepitaxial growth of III-V on Si multi-junction solar cell structures via metal-organic vapor phase epitaxy has been analyzed. Initially, the emitter formation produces important lifetime degradation. Nevertheless, a progressive recovery was observed during the growth of the metamorphic GaAsP/Si structure. A step-wise mechanism has been proposed to explain the lifetime evolution observed during this process. The initial lifetime degradation is believed to be related to the formation of thermally-induced defects within the Si bulk. These defects are subsequently passivated by fast-diffusing atomic hydrogen -coming from precursor (i.e. PH3 and AsH3) pyrolysis- during the subsequent III-V growth. These results indicate that the MOVPE environment used to create the III-V/Si solar cell structures has a dynamic impact on the minority carrier lifetime. Consequently, designing processes that promote the recovery of the lifetime is a must to support the production of high-quality III-V/Si solar cells

    First accelerator test of vacuum components with laser-engineered surfaces for electron-cloud mitigation

    Get PDF
    Electron cloud mitigation is an essential requirement for high-intensity proton circular accelerators. Among other solutions, laser engineered surface structures (LESS) present the advantages of having potentially a very low secondary electron yield (SEY) and allowing simple scalability for mass production. Two copper liners with LESS have been manufactured and successfully tested by monitoring the electron cloud current in a dipole magnet in the SPS accelerator at CERN during the 2016 run. In this paper we report on these results as well as the detailed experiments carried out on samples—such as the SEY and topography studies—which led to an optimized treatment in view of the SPS test and future possible use in the HL-LHC
    corecore