1,592 research outputs found

    Stimulated Neutrino Conversion and Bounds on Neutrino Magnetic Moments

    Get PDF
    Recent experiment proposed to observe induced radiative neutrino transitions are confronted to existing bounds on neutrino magnetic moments from earth-based experiments. These are found to exclude any observation by several orders of magnitude, unless the magnetic moments are assumed to be strongly momentum dependent. This possibility is discussed in some generality, and we find that nontrivial dependence of the neutrino form factor may indeed occur, leading to quite unexpected effects, although this is insufficient by orders of magnitude to justify the experiments.Comment: one reference modified + minor changes, 8 pages, plain Late

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include

    Rotating Black Branes in the presence of nonlinear electromagnetic field

    Full text link
    In this paper, we consider a class of gravity whose action represents itself as a sum of the usual Einstein-Hilbert action with cosmological constant and an U(1)U(1) gauge field for which the action is given by a power of the Maxwell invariant. We present a class of the rotating black branes with Ricci flat horizon and show that the presented solutions may be interpreted as black brane solutions with two event horizons, extreme black hole and naked singularity provided the parameters of the solutions are chosen suitably. We investigate the properties of the solutions and find that for the special values of the nonlinear parameter, the solutions are not asymptotically anti-deSitter. At last, we obtain the conserved quantities of the rotating black branes and find that the nonlinear source effects on the electric field, the behavior of spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ

    Graviton production from extra dimensions

    Get PDF
    Graviton production due to collapsing extra dimensions is studied. The momenta lying in the extra dimensions are taken into account. A DD-dimensional background is matched to an effectively four-dimensional standard radiation dominated universe. Using observational constraints on the present gravitational wave spectrum, a bound on the maximal temperature at the beginning of the radiation era is derived. This expression depends on the number of extra dimensions, as well as on the DD-dimensional Planck mass. Furthermore, it is found that the extra dimensions have to be large.Comment: LaTeX file, 14 pages, 4 figure

    Magnetic exchange, anisotropy and excitonic fluctuations in a [Ni<sup>II</sup><sub>7</sub>] Anderson wheel

    Get PDF
    The solvothermal reaction of Ni(ClO4)2·6H2O with hmpH and picH in a basic MeOH solution affords [Ni7(hmp)7.55(pic)4.45](ClO4)2·6MeOH (1·6MeOH) directly upon cooling the mother liquor. The metallic skeleton of 1 describes a [NiII7] centred hexagon, commonly referred to as an Anderson wheel. Magnetic measurements reveal ferromagnetic exchange between the central Ni ion and the ring Ni ions, and antiferromagnetic exchange between neighbouring ring Ni ions. They also confirm the presence of easy-plane anisotropy for the central Ni ion, and easy-axis anisotropy for the ring Ni ions, in agreement with DFT calculations and neutron scattering. For the analysis of the latter we apply an excitonic formalism using a Green's function response theory.</p

    Role of fractal dimension in random walks on scale-free networks

    Full text link
    Fractal dimension is central to understanding dynamical processes occurring on networks; however, the relation between fractal dimension and random walks on fractal scale-free networks has been rarely addressed, despite the fact that such networks are ubiquitous in real-life world. In this paper, we study the trapping problem on two families of networks. The first is deterministic, often called (x,y)(x,y)-flowers; the other is random, which is a combination of (1,3)(1,3)-flower and (2,4)(2,4)-flower and thus called hybrid networks. The two network families display rich behavior as observed in various real systems, as well as some unique topological properties not shared by other networks. We derive analytically the average trapping time for random walks on both the (x,y)(x,y)-flowers and the hybrid networks with an immobile trap positioned at an initial node, i.e., a hub node with the highest degree in the networks. Based on these analytical formulae, we show how the average trapping time scales with the network size. Comparing the obtained results, we further uncover that fractal dimension plays a decisive role in the behavior of average trapping time on fractal scale-free networks, i.e., the average trapping time decreases with an increasing fractal dimension.Comment: Definitive version published in European Physical Journal

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page
    corecore