Fractal dimension is central to understanding dynamical processes occurring
on networks; however, the relation between fractal dimension and random walks
on fractal scale-free networks has been rarely addressed, despite the fact that
such networks are ubiquitous in real-life world. In this paper, we study the
trapping problem on two families of networks. The first is deterministic, often
called (x,y)-flowers; the other is random, which is a combination of
(1,3)-flower and (2,4)-flower and thus called hybrid networks. The two
network families display rich behavior as observed in various real systems, as
well as some unique topological properties not shared by other networks. We
derive analytically the average trapping time for random walks on both the
(x,y)-flowers and the hybrid networks with an immobile trap positioned at an
initial node, i.e., a hub node with the highest degree in the networks. Based
on these analytical formulae, we show how the average trapping time scales with
the network size. Comparing the obtained results, we further uncover that
fractal dimension plays a decisive role in the behavior of average trapping
time on fractal scale-free networks, i.e., the average trapping time decreases
with an increasing fractal dimension.Comment: Definitive version published in European Physical Journal