3,633 research outputs found

    Global three-neutrino oscillation analysis of neutrino data

    Get PDF
    A global analysis of the solar, atmospheric and reactor neutrino data is presented in terms of three-neutrino oscillations. We include the most recent solar neutrino rates of Homestake, SAGE, GALLEX and GNO, as well as the recent 1117 day Super-Kamiokande data sample, including the recoil electron energy spectrum both for day and night periods and we treat in a unified way the full parameter space for oscillations, correctly accounting for the transition from the matter enhanced (MSW) to the vacuum oscillations regime. Likewise, we include in our description conversions with θ12>π/4\theta_{12} > \pi/4. For the atmospheric data we perform our analysis of the contained events and the upward-going ν\nu-induced muon fluxes, including the previous data samples of Frejus, IMB, Nusex, and Kamioka experiments as well as the full 71 kton-yr (1144 days) Super-Kamiokande data set, the recent 5.1 kton-yr contained events of Soudan2 and the results on upgoing muons from the MACRO detector. We first present the allowed regions of solar and atmospheric oscillation parameters θ12\theta_{12}, Δm212\Delta m^2_{21} and θ23\theta_{23}, Δm322\Delta m^2_{32}, respectively, as a function of θ13\theta_{13} and determine the constraints from atmospheric and solar data on the mixing angle θ13\theta_{13}, common to solar and atmospheric analyses. We also obtain the allowed ranges of parameters from the full five-dimensional combined analysis of the solar, atmospheric and reactor data.Comment: 56 pages, 21 postscript figures. Some misprints corrected and new references added. Chooz limit included in Fig.21. Final version to appear in Phys. Rev.

    Seasonal Dependence in the Solar Neutrino Flux

    Get PDF
    MSW solutions of the solar neutrino problem predict a seasonal dependence of the zenith angle distribution of the event rates, due to the non-zero latitude at the Super-Kamiokande site. We calculate this seasonal dependence and compare it with the expectations in the no-oscillation case as well as just-so scenario, in the light of the latest Super-Kamiokande 708-day data. The seasonal dependence can be sizeable in the large mixing angle MSW solution and would be correlated with the day-night effect. This may be used to discriminate between MSW and just-so scenarios and should be taken into account in refined fits of the data.Comment: 4 pages, latex, RevTeX, two postscript figure

    \u3cem\u3eHymenachne Amplexicaluis\u3c/em\u3e [(Rudge) Nees] Genetic Resources Collection in México, a Suitable Grass for Flood Plains in Tropical Areas

    Get PDF
    Hymenachne amplexicaluis [( Rudge ) Nees; 2n= 2x= 24; Azuche, West Indian marsh grass] is a native Central and South America C3 grass that grows well under intermittent flooding conditions. It produces good seed set and stolons to thrive on new areas assuring its survival, combined with an efficient N metabolism to promote vigorous new growing leaves and tillers (Antel et al., 1998). Azuche is a dual attribute species when introduced to new areas; it has valuable forage attributes but also is a potential weed (Hill, 2000). As Azuche is a native species, one must deal with in the best possible way within Tropical Latin America areas (Enríquez et al., 2004). No report has been found to date on living genetic resources collection and evaluation for this species

    Solar models and solar neutrino oscillations

    Get PDF
    We provide a summary of the current knowledge, theoretical and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for doing new solar neutrino experiments and what we think may be learned from the future measurements.Comment: Submitted to the Neutrino Focus Issue of New Journal of Physics at http://www.njp.or

    Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators

    Get PDF
    The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral - Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.Comment: 37 pages, 14 figures, 40 reference

    On the Size of the Dark Side of the Solar Neutrino Parameter Space

    Get PDF
    We present an analysis of the MSW neutrino oscillation solutions of the solar neutrino problem in the framework of two-neutrino mixing in the enlarged parameter space (Δm2,tan2θ)(\Delta m^2, \tan^2\theta) with θ(0,π2)\theta \in (0,\frac{\pi}{2}). Recently, it was pointed out that the allowed region of parameters from a fit to the measured total rates can extend to values θπ4\theta \geq \frac{\pi}{4} (the so called ``dark side'') when higher confidence levels are allowed. The purpose of this letter is to reanalize the problem including all the solar neutrino data available, to discuss the dependence on the statistical criteria in the determination of the CL of the ``dark side'' and to extract the corresponding limits on the largest mixing allowed by the data. Our results show that when the Super-Kamiokande data on the zenith angle distribution of events and the spectrum information is included, the regions extend more into the dark side.Comment: 5 pages,latex file using RevTex. Two-layer aproximation for the Earth density replaced by numerical integration with PREM. Latest parametrization of the sun matter density (BP2000) is included. Misprints corrected. Conclusions unchanged. 5 postscript figures (bitmapped for compression). A full version of the paper can be found at http://ific.uv.es/~penya/papers/ To appear in Phys. Rev.

    Phenomenology of Maximal and Near-Maximal Lepton Mixing

    Get PDF
    We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other (xx=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter ϵ12sin2θex\epsilon\equiv1-2\sin^2\theta_{ex} and quantify the present experimental status for ϵ<0.3|\epsilon|<0.3. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for 10810^{-8} eV^2\lsim\Delta m^2\lsim2\times10^{-7} eV2^2. In the mass ranges \Delta m^2\gsim 1.5\times10^{-5} eV2^2 and 4×10104\times10^{-10} eV^2\lsim\Delta m^2\lsim2\times10^{-7} eV2^2 the full interval ϵ<0.3|\epsilon|<0.3 is allowed within 4σ\sigma(99.995 % CL). We suggest ways to measure ϵ\epsilon in future experiments. The observable that is most sensitive to ϵ\epsilon is the rate [NC]/[CC] in combination with the Day-Night asymmetry in the SNO detector. With theoretical and statistical uncertainties, the expected accuracy after 5 years is Δϵ0.07\Delta \epsilon\sim 0.07. We also discuss the effects of maximal and near-maximal νe\nu_e-mixing in atmospheric neutrinos, supernova neutrinos, and neutrinoless double beta decay.Comment: 49 pages Latex file using RevTeX. 16 postscript figures included. ( Fig.2 and Fig.4 bitmapped for compression,better resolution at http://ific.uv.es/~pppac/). Improved presentation: some statements included and labels added in figures. Some misprint corrected. Final version to appear in Phys. Rev D. Report no: IFIC/00-40, IASSNS-HEP-00-5

    Status of global fits to neutrino oscillations

    Get PDF
    We review the present status of global analyses of neutrino oscillations, taking into account the most recent neutrino data including the latest KamLAND and K2K updates presented at Neutrino2004, as well as state-of-the-art solar and atmospheric neutrino flux calculations. We give the two-neutrino solar + KamLAND results, as well as two-neutrino atmospheric + K2K oscillation regions, discussing in each case the robustness of the oscillation interpretation against departures from the Standard Solar Model and the possible existence of non-standard neutrino physics. Furthermore, we give the best fit values and allowed ranges of the three-flavour oscillation parameters from the current worlds' global neutrino data sample and discuss in detail the status of the small parameters \alpha \equiv \Dms/\Dma as well as sin2θ13\sin^2\theta_{13}, which characterize the strength of CP violating effects in neutrino oscillations. We also update the degree of rejection of four-neutrino interpretations of the LSND anomaly in view of the most recent developments.Comment: v6: In the last Appendix we provide updated neutrino oscillation results which take into account the relevant oscillation data released by the MINOS and KamLAND collaboration

    Einstein and Brans-Dicke frames in multidimensional cosmology

    Get PDF
    Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold M= M_0 x M_1 ...x M_n are investigated under dimensional reduction to a D_0-dimensional effective non-minimally coupled sigma-model which generalizes the familiar Brans-Dicke model. It is argued that the Einstein frame should be considered as the physical one. The general prescription for the Einstein frame reformulation of known solutions in the Brans-Dicke frame is given. As an example, the reformulation is demonstrated explicitly for the generalized Kasner solutions where it is shown that in the Einstein frame there are no solutions with inflation of the external space.Comment: 27 pages, Revte

    Four--Neutrino Oscillation Solutions of the Solar Neutrino Problem

    Get PDF
    We present an analysis of the neutrino oscillation solutions of the solar neutrino problem in the framework of four-neutrino mixing where a sterile neutrino is added to the three standard ones. We perform a fit to the full data set corresponding to the 825-day Super-Kamiokande data sample as well as to Chlorine, GALLEX and SAGE and Kamiokande experiments. In our analysis we use all measured total event rates as well as all Super-Kamiokande data on the zenith angle dependence and the recoil electron energy spectrum. We consider both transitions via the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism as well as oscillations in vacuum (just-so) and find the allowed solutions for different values of the additional mixing angles. This framework permits transitions into active or sterile neutrinos controlled by the additional parameter cos2(ϑ23)cos2(ϑ24)\cos^2(\vartheta_{23}) \cos^2(\vartheta_{24}) . We discuss the maximum allowed values of this additional mixing parameter for the different solutions.Comment: 28 pages Latex file using RevTeX. 8 postscript figures included (bitmapped for compression). Detailed explanation of criterion 3 and lower two graphs of Fig. 8. Misprints corrected in table II.A full version of the paper can be found at http://ific.uv.es/~penya/papers/four
    corecore