497 research outputs found

    Can new generations explain neutrino masses?

    Get PDF
    In this talk we explore the possibility that the smallness of the observed neutrino masses is naturally understood in a modified version of the standard model with N extra generations of fermions and N right-handed neutrinos, in which light neutrino masses are generated at two loops. We find that with N = 1 it is not possible to fit the observed spectrum of masses and mixings while with N = 2 it is. Within this extension, we analyse the parameters which are allowed and the possible phenomenological signals of the model in future experiments. Contribution to the proceedings of Les Rencontres de Moriond EW 2011, Young Scientist Forum

    Surrogate Modelling of the FLUTE Low-Energy Section

    Get PDF
    Numerical beam dynamics simulations are essential tools in the study and design of particle accelerators, but they can be prohibitively slow for online prediction during operation or for systematic evaluations of new parameter settings. Machine learning-based surrogate models of the accelerator provide much faster predictions of the beam properties and can serve as a virtual diagnostic or to augment data for reinforcement learning training. In this paper, we present the first results on training a surrogate model for the low-energy section at the Ferninfrarot Linac- und Test-Experiment (FLUTE)

    Optimization Studies of Simulated THz Radiation at FLUTE

    Get PDF
    The linac-based test facility FLUTE (Ferninfrarot Linac Und Test Experiment) at KIT will be used to study novel accelerator technology and provide intense THz pulses. In this paper, we present start-to-end simulation studies of FLUTE with different bunch charges. We employ a parallel Bayesian optimization algorithm for different bunch charges of FLUTE to find optimized accelerator settings for the generation of intense THz radiation

    Feeding Ecology of Juvenile Orange-Spotted Grouper (Epinephelus coioides) and Other Co-Existing Juvenile Fish Species in Coastal Waters of the Lower Gulf of Thailand

    Get PDF
    āļ§āļīāļ—āļĒāļēāļ™āļīāļžāļ™āļ˜āđŒ (āļ§āļ—.āļĄ.(āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļāļēāļĢāļ›āļĢāļ°āļĄāļ‡))--āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāļŠāļ‡āļ‚āļĨāļēāļ™āļ„āļĢāļīāļ™āļ—āļĢāđŒ, 2560āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļīāđ€āļ§āļĻāļ§āļīāļ—āļĒāļēāļ—āļēāļ‡āļ­āļēāļŦāļēāļĢāļ‚āļ­āļ‡āļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļ”āļ­āļāđāļ”āļ‡āļ§āļąāļĒāļ­āđˆāļ­āļ™ (Epinephelus coioides) āđāļĨāļ°āļĨāļđāļāļ›āļĨāļēāļŠāļ™āļīāļ”āļ­āļ·āđˆāļ™āļ—āļĩāđˆāļ­āļēāļĻāļąāļĒāļĢāđˆāļ§āļĄāļāļąāļ™āļšāļĢāļīāđ€āļ§āļ“āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļŠāļēāļĒāļāļąāđˆāļ‡āļ­āđˆāļēāļ§āđ„āļ—āļĒāļ•āļ­āļ™āļĨāđˆāļēāļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāđāļĄāđˆāļ›āļēāļāļ™āđ‰āļģāđ€āļ—āļžāļē āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļ‡āļ‚āļĨāļē āļ–āļķāļ‡āļ›āļēāļāđāļĄāđˆāļ™āđ‰āļģ Kuala Besut āļĢāļąāļ Terengganu āļ›āļĢāļ°āđ€āļ—āļĻāļĄāļēāđ€āļĨāđ€āļ‹āļĩāļĒ āļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļ”āļ·āļ­āļ™āļ˜āļąāļ™āļ§āļēāļ„āļĄ 2558 āļ–āļķāļ‡ āđ€āļ”āļ·āļ­āļ™āļĄāļĩāļ™āļēāļ„āļĄ 2559 āđ‚āļ”āļĒāđƒāļŠāđ‰āļ‹āļąāđ‰āļ‡āļĨāđˆāļ­āļĨāļđāļāļ›āļĨāļē āđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āļ­āļēāļŦāļēāļĢāđƒāļ™āļāļĢāļ°āđ€āļžāļēāļ° āļžāļšāļ§āđˆāļē āļŠāļ™āļīāļ”āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļžāļšāđƒāļ™āļāļĢāļ°āđ€āļžāļēāļ°āļ­āļēāļŦāļēāļĢāļĨāļđāļāļ›āļĨāļēāļ—āļąāđ‰āļ‡ 5 āļŠāļ™āļīāļ” āļ„āļ·āļ­ āļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļ”āļ­āļāđāļ”āļ‡ (Epinephelus coioides āļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļŦāļēāļ‡āļ‹āđ‰āļ­āļ™ (Epinephelus bleekeri) āļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļˆāļļāļ”āļŸāđ‰āļē (Plectropomus leopards) āļĨāļđāļāļ›āļĨāļēāļšāļđāđˆāļˆāļēāļ (Butis koilomatodons) āđāļĨāļ° āļĨāļđāļāļ›āļĨāļēāļāļ°āļžāļ‡āļ‚āđ‰āļēāļ‡āļ›āļēāļ™ (Lutjanus russelli) āļ—āļĩāđˆāļ­āļēāļĻāļąāļĒāļ­āļĒāļđāđˆāļĢāļ§āļĄāļāļąāļ™ āļ„āļ·āļ­ shrimp amphipod āļŠāļ™āļīāļ” Elasmopus sp. Fish larvae āđāļĨāļ° Megalopa āļ„āđˆāļēāļāļēāļĢāđ€āļ•āđ‡āļĄāļāļĢāļ°āđ€āļžāļēāļ°āļ‚āļ­āļ‡āļ­āļēāļŦāļēāļĢāđāļĨāļ°āļˆāļģāļ™āļ§āļ™āļŠāļ™āļīāļ”āļ­āļēāļŦāļēāļĢāļĨāļđāļāļ›āļĨāļēāļ—āļąāđ‰āļ‡ 5 āļŠāļ™āļīāļ”āļāļīāļ™āļ™āļąāđ‰āļ™ āļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļĒāļīāđˆāļ‡ (P<0.001) āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļĨāļđāļāļ›āļĨāļēāđāļ•āđˆāļĨāļ°āļŠāļ™āļīāļ” āļāļēāļĢāļ—āļąāļšāļ‹āđ‰āļ­āļ™āļ‚āļ­āļ‡āļ­āļēāļŦāļēāļĢāļžāļšāļ§āđˆāļē āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ›āļĨāļē E. coioides āđāļĨāļ°āļ›āļĨāļēāļ­āļĩāļāļŠāļēāļĄāļŠāļ™āļīāļ” āļ„āļ·āļ­ P. leopardus B. koilomatodons L. russellii āļĄāļĩāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāđ€āļĨāļ·āļ­āļāļāļīāļ™āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™āļĄāļēāļ āđƒāļ™āļ‚āļ“āļ°āđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āļ›āļĨāļē E. coioides āļāļąāļšāļ›āļĨāļē E. bleekeri āđāļĨāļ° āļ›āļĨāļē L. russellii āļāļąāļšāļ›āļĨāļē E. bleekeri āļĄāļĩāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāđ€āļĨāļ·āļ­āļāļāļīāļ™āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āļŠāļ™āļīāļ”āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļžāļšāđƒāļ™āļāļĢāļ°āđ€āļžāļēāļ°āļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļ”āļ­āļāđāļ”āļ‡ āđ€āļ›āđ‡āļ™āļŠāļąāļ•āļ§āđŒāļŦāļ™āđ‰āļēāļ”āļīāļ™ āļŠāļ™āļīāļ”āļ—āļĩāđˆāļžāļšāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āļ„āļ·āļ­ shrimp āļĢāļ­āļ‡āļĨāļ‡āļĄāļē āļ„āļ·āļ­ amphipod āļŠāļ™āļīāļ” Grandidierella sp. āđāļĨāļ° Elasmopus sp. āđāļĨāļ° fish larvae āđ€āļ›āđ‡āļ™āļ­āļēāļŦāļēāļĢāļŠāļ™āļīāļ”āđ€āļ”āđˆāļ™āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ‚āļ™āļēāļ”āļĨāļđāļāļ›āļĨāļē āļŠāļ–āļēāļ™āļĩ āđāļĨāļ°āđ€āļ”āļ·āļ­āļ™ āļĄāļĩāļ­āļīāļ—āļ˜āļīāļžāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ­āļēāļŦāļēāļĢāđ€āļ•āđ‡āļĄāļāļĢāļ°āđ€āļžāļēāļ°āđāļĨāļ°āļˆāļģāļ™āļ§āļ™āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āļ­āļēāļŦāļēāļĢāđƒāļ™āļāļĢāļ°āđ€āļžāļēāļ°āļ­āļēāļŦāļēāļĢāļ‚āļ­āļ‡āļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļ”āļ­āļāđāļ”āļ‡ (P<0.001) āļžāļšāļ§āđˆāļē āļĄāļĩāđ€āļžāļĩāļĒāļ‡āļĨāļđāļāļ›āļĨāļēāļ‚āļ™āļēāļ”āđ€āļĨāđ‡āļāļāļ§āđˆāļē 2.00 āđ€āļ‹āļ™āļ•āļīāđ€āļĄāļ•āļĢ āđāļĨāļ°āļĨāļđāļāļ›āļĨāļēāļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ”āļĄāļēāļāļāļ§āđˆāļē 3.01 āđ€āļ‹āļ™āļ•āļīāđ€āļĄāļ•āļĢ āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™āļ—āļĩāđˆāđ„āļĄāđˆāļžāļšāļāļēāļĢāļ—āļąāļšāļ‹āđ‰āļ­āļ™āļāļąāļ™āļ‚āļ­āļ‡āļ­āļēāļŦāļēāļĢ āļĄāļĩāļāļēāļĢāļˆāļąāļ”āļāļĨāļļāđˆāļĄāđ€āļ”āļ·āļ­āļ™āļ­āļ­āļāđ€āļ›āđ‡āļ™āļŠāļ­āļ‡āļāļĨāļļāđˆāļĄ āđƒāļ™āđ€āļ”āļ·āļ­āļ™āļ˜āļąāļ™āļ§āļēāļ„āļĄ āļĨāļđāļāļ›āļĨāļēāļˆāļ°āđ€āļĨāļ·āļ­āļāļāļīāļ™āļ­āļēāļŦāļēāļĢāļāļĨāļļāđˆāļĄāļĨāļđāļāļ›āļĨāļēāļ”āđ‰āļ§āļĒāļāļąāļ™āļŠāļđāļ‡āļāļ§āđˆāļēāđ€āļ”āļ·āļ­āļ™āļ­āļ·āđˆāļ™āđ† āđāļĨāļ°āļžāļšāļ§āđˆāļēāļĨāļđāļāļ›āļĨāļēāļ—āļĩāđˆāļˆāļąāļšāđ„āļ”āđ‰āļˆāļēāļāļŠāļ–āļēāļ™āļĩāđ€āļ—āļžāļē āļŠāļēāļĒāļšāļļāļĢāļĩ āđāļĨāļ° Kuala Besut āļˆāļ°āđ€āļĨāļ·āļ­āļāļāļīāļ™āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļĄāļĩāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™ āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ‚āļ™āļēāļ”āļĨāļđāļāļ›āļĨāļē āđāļĨāļ°āļ‚āļ™āļēāļ”āļ›āļēāļ āļĄāļĩāļ­āļīāļ—āļ˜āļžāļĨāļ•āđˆāļ­āļ‚āļ™āļēāļ”āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļžāļšāđƒāļ™āļāļĢāļ°āđ€āļžāļēāļ°āļ­āļēāļŦāļēāļĢāļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļ”āļ­āļāđāļ”āļ‡ (P<0.05) āļ„āđˆāļēāļāļēāļĢāđ€āļĨāļ·āļ­āļāļāļīāļ™āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļĨāļđāļāļ›āļĨāļēāļāļ°āļĢāļąāļ‡āļ”āļ­āļāđāļ”āļ‡āđ€āļĨāļ·āļ­āļāļāļīāļ™āļ­āļēāļŦāļēāļĢāļāļĨāļļāđˆāļĄ amphipods āđ‚āļ”āļĒāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļāļēāļĢāđ€āļĨāļ·āļ­āļāļāļīāļ™āļĨāļ”āļĨāļ‡āļ•āļēāļĄāļ‚āļ™āļēāļ”āļ‚āļ­āļ‡āļ›āļĨāļēāļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāđ€āļĨāļ·āļ­āļāļāļīāļ™ shrimp āđāļĨāļ° fish larvae āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ•āļēāļĄāļ‚āļ™āļēāļ”āļ‚āļ­āļ‡āļĨāļđāļāļ›āļĨāļēāļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļĄāļ·āđˆāļ­āļ›āļĨāļēāļĄāļĩāļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāļ‚āļķāđ‰āļ™ āļ›āļĨāļēāļˆāļ°āđ€āļĨāļ·āļ­āļāļāļīāļ™āļ­āļēāļŦāļēāļĢāļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ”āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ€āļžāļĩāļĒāļ‡āļžāļ­āļ•āđˆāļ­āļ„āļ§āļēāļĄāļ•āđ‰āļ­āļ‡āļāļēāļĢāļžāļĨāļąāļ‡āļ‡āļēāļ™āļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ•āļēāļĄāļ‚āļ™āļēāļ” āļāļēāļĢāļ„āđ‰āļ™āļ„āļ§āđ‰āļēāļ—āļēāļ‡āļ§āļīāļ—āļĒāļēāļĻāļēāļŠāļ•āļĢāđŒāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļŠāļģāļ„āļąāļāļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ—āļģāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļēāđƒāļˆāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļ—āļšāļēāļ—āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ™āļīāđ€āļ§āļĻāļšāļĢāļīāđ€āļ§āļ“āļ›āļēāļāđāļĄāđˆ āļ—āļĩāđˆāļĄāļĩāļ•āđˆāļ­āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāđƒāļŦāđ‰āļ­āļēāļŦāļēāļĢāļ‚āļ­āļ‡ E. coioides āđāļĨāļ°āļĨāļđāļāļ›āļĨāļēāļŠāļ™āļīāļ”āļ­āļ·āđˆāļ™āļ—āļĩāđˆāļĄāļĩāļ­āļĒāļđāđˆāļĢāđˆāļ§āļĄāļāļąāļ™ āđāļĨāļ°āđ€āļ›āđ‡āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļžāļ·āđ‰āļ™āļāļēāļ™āđƒāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļŠāļ āļēāļžāđāļ§āļ”āļĨāđ‰āļ­āļĄāļ‚āļ­āļ‡āļ›āļēāļāđāļĄāđˆāļ™āđ‰āļģāđāļĨāļ°āļ—āļĢāļąāļžāļĒāļēāļāļĢāļāļēāļĢāļ›āļĢāļ°āļĄāļ‡ Study on feeding ecology of juvenile orange spotted grouper (Epinephelus coioides) and juveniles of co-existing species has been done in coastal waters of lower part of the Gulf of Thailand from Thepa river mouth Songhkhla province to Kuala Besut river mouth, Terengganu, Malaysia during December 2015 and March 2016 collected by mean of fish aggregating devices (FADs) to investigate food composition in fish stomachs. It was found that shrimp, amphipod, fish larvae and megalopa were the five main food items found in the stomachs. Fullness index and number of food item were highly significantly different between these five fish species (P<0.001). Diet overlaps between E. coioides and P. leopardus, B. Koilomatodons and L. Russellii indicated that they consumed slightly similar suit of food items, whereas L. russellii and E. bleekeri fed on different food. Diet composition of E. coioides comprised of benthic organisms especially shrimp, amphipod (Grandidierella sp. and Elasmopus sp.) and fish larvae. Size of fish, study site and month of collection significantly affected fullness index and number of food items in fish stomach (P<0.001) For diet overlap, it was found that only fish smaller than 2.00 cm and 3.01 cm showed no overlapping between them. Based on regression analysis, it was found that fish size and mouth size significantly affected size of food found in the stomach of E. coioides (P<0.05). Result from food selectivity index indicated that they preferred to select Amphipods with the trend of decreasing towards fish size. This scientific finding is crucial information for an understanding of how the nursery role of estuary functions on feeding habits of E. coioides and other co-existing species and serves as basic information in managing both the estuarine environment and the fishery resources

    Spontaneous R-Parity violation bounds

    Get PDF
    We investigate bounds from tree-level and one-loop processes in generic supersymmetric models with spontaneous R-parity breaking in the superpotential. We analyse the bounds from a general point of view. The bounds are applicable both for all models with spontaneous R-parity violation and for explicit bilinear R-parity violation based on general lepton-chargino and neutrino-neutralino mixings. We find constraints from semileptonic B, D and K decays, leptonic decays of the mu and tau, electric dipole moments, as well as bounds for the anomalous magnetic moment of the muon.Comment: 22 page

    Dirac field in topologically massive gravity

    Full text link
    We consider a Dirac field coupled minimally to the Mielke-Baekler model of gravity and investigate cosmological solutions in three dimensions. We arrive at a family of solutions which exists even in the limit of vanishing cosmological constant.Comment: 12 pages. Title changed. Conclusion extended. Appendix added. To appear in Gen. Rel. Gra

    Classifying Parkinson’s Disease Patients With Syntactic and Socio-emotional Verbal Measures

    Get PDF
    Frontostriatal disorders, such as Parkinson’s disease (PD), are characterized by progressive disruption of cortico-subcortical dopaminergic loops involved in diverse higher-order domains, including language. Indeed, syntactic and emotional language tasks have emerged as potential biomarkers of frontostriatal disturbances. However, relevant studies and models have typically considered these linguistic dimensions in isolation, overlooking the potential advantages of targeting multidimensional markers. Here, we examined whether patient classification can be improved through the joint assessment of both dimensions using sentential stimuli. We evaluated 31 early PD patients and 24 healthy controls via two syntactic measures (functional-role assignment, parsing of long-distance dependencies) and a verbal task tapping social emotions (envy, Schadenfreude) and compared their classification accuracy when analyzed in isolation and in combination. Complementarily, we replicated our approach to discriminate between patients on and off medication. Results showed that specific measures of each dimension were selectively impaired in PD. In particular, joint analysis of outcomes in functional-role assignment and Schadenfreude improved the classification accuracy of patients and controls, irrespective of their overall cognitive and affective state. These results suggest that multidimensional linguistic assessments may better capture the complexity and multi-functional impact of frontostriatal disruptions, highlighting their potential contributions in the ongoing quest for sensitive markers of PD.Fil: Baez, Sandra. Universidad de los Andes; ColombiaFil: Herrera, Eduar. Universidad Icesi; ColombiaFil: Trujillo, Catalina. Universidad del Valle; ColombiaFil: Cardona, Juan F.. Universidad del Valle; ColombiaFil: Diazgranados, JesÚs A.. Centro MÃĐdico de AtenciÃģn NeurolÃģgica NeurÃģlogos de Occidente; ColombiaFil: Pino, Mariana. Universidad AutÃģnoma del Caribe; ColombiaFil: Santamaria Garcia, Hernando. Consejo Nacional de Investigaciones Científicas y TÃĐcnicas; Argentina. Hospital Universitario San Ignacio; Colombia. Pontificia Universidad Javeriana; ColombiaFil: IbaÃąez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y TÃĐcnicas; Argentina. Universidad AutÃģnoma del Caribe; Colombia. Universidad de San AndrÃĐs; Argentina. Universidad Adolfo IbaÃąez; Chile. University of California; Estados UnidosFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y TÃĐcnicas; Argentina. Universidad de San AndrÃĐs; Argentina. University of California; Estados Unidos. Universidad Catolica de Cuyo. Facultad de Educacion.; Argentin

    Broken R-parity, stop decays, and neutrino physics

    Get PDF
    We discuss the phenomenology of the lightest stop in models where R-parity is broken by bilinear superpotential terms. In this class of models we consider scenarios where the R-parity breaking two-body decay ~t_1->\tau^+b competes with the leading three-body decays such as ~t_1->W^+b~\chi^0_1. We demonstrate that the R-parity violating decay can be sizable and in some parts of the parameter space even the dominant one. Moreover we discuss the expectations for \~t_1->\mu^+b and ~t_1->e^+b. The recent results from solar and atmospheric neutrinos suggest that these are as important as the tau bottom mode. The \~t_1->l^+b decays are of particular interest for hadron colliders, as they may allow a full mass reconstruction of the lighter stop. Moreover these decay modes allow cross checks on the neutrino mixing angle involved in the solar neutrino puzzle complementary to those possible using neutralino decays. For the so--called small mixing angle or SMA solution ~t_1->e^+b should be negligible, while for the large mixing angle type solutions all ~t_1->l^+b decays should have comparable magnitude.Comment: 51 pages, 6 figures, LaTeX2e and RevTeX4, published versio

    Probing neutrino properties with charged scalar lepton decays

    Get PDF
    Supersymmetry with bilinear R-parity violation provides a predictive framework for neutrino masses and mixings in agreement with current neutrino oscillation data. The model leads to striking signals at future colliders through the R-parity violating decays of the lightest supersymmetric particle. Here we study charged scalar lepton decays and demonstrate that if the scalar tau is the LSP (i) it will decay within the detector, despite the smallness of the neutrino masses, (ii) the relative ratio of branching ratios Br({tilde tau}_1 --> e sum nu_i)/ Br({tilde tau}_1 --> mu sum nu_i) is predicted from the measured solar neutrino angle, and (iii) scalar muon and scalar electron decays will allow to test the consistency of the model. Thus, bilinear R-parity breaking SUSY will be testable at future colliders also in the case where the LSP is not the neutralino.Comment: 24 pages, 8 ps figs Report-no.: IFIC/02-33 and ZU-TH 11/0
    • â€Ķ
    corecore