7,387 research outputs found

    Continuous-Wave Multiphoton Photoemission from Plasmonic Nanostars

    Get PDF
    Highly nonlinear optical processes, such as multiphoton photoemission, require high intensities, typically achieved with ultrashort laser pulses and, hence, were first observed with the advent of picosecond laser technology. An alternative approach for reaching the required field intensities is offered by localized optical resonances such as plasmons. Here, we demonstrate localized multiphoton photoemission from plasmonic nanostructures under continuous-wave illumination. We use synthesized plasmonic gold nanostars, which exhibit sharp tips with structural features smaller than 5 nm, leading to near-field-intensity enhancements exceeding 1000. This large enhancement facilitates 3-photon photoemission driven by a simple continuous-wave laser diode. We characterize the intensity and polarization dependencies of the photoemission yield from both individual nanostars and ensembles. Numerical simulations of the plasmonic enhancement, the near-field distributions, and the photoemission intensities are in good agreement with experiment. Our results open a new avenue for the design of nanoscale electron sources

    Virtues and Flaws of the Pauli Potential

    Get PDF
    Quantum simulations of complex fermionic systems suffer from a variety of challenging problems. In an effort to circumvent these challenges, simpler ``semi-classical'' approaches have been used to mimic fermionic correlations through a fictitious ``Pauli potential''. In this contribution we examine two issues. First, we address some of the inherent difficulties in a widely used version of the Pauli potential. Second, we refine such a potential in a manner consistent with the most basic properties of a cold Fermi gas, such as its momentum distribution and its two-body correlation function.Comment: 16 pages, 6 figure

    Decontamination of Diesel particles from air by using the Counterfog (R) system

    Get PDF
    The existence of particles with diameter under 10m in air is strongly correlated with respiratory diseases. These particles are profusely produced by heating systems, traffic, and Diesel engines creating a serious problem to modern cities. Natural mechanisms removing particles from the atmosphere are too slow to deal with the huge amount of particles daily released by human activity. The objective of this work is to measure the effectiveness of a new technology called Counterfog (R) to eliminate airborne particles. The results show that Counterfog (R) is able to wash out PM10, PM5, and PM2.5 Diesel-generated airborne particles quite efficiently.This work has been funded by the FP7-SEC-2012-1 program of the EU Commission under grant number 312804

    Quantum kinetic Ising models

    Full text link
    We introduce a quantum generalization of classical kinetic Ising models, described by a certain class of quantum many body master equations. Similarly to kinetic Ising models with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many body density matrix. The ground states of these Hamiltonians are well described by matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low energy states.Comment: 20 pages, 4 figures, minor improvements, accepted in New Journal of Physic

    Adjoint fermion zero-modes for SU(N) calorons

    Get PDF
    We derive analytic formulas for the zero-modes of the Dirac equation in the adjoint representation in the background field of Q=1 SU(N) calorons. Solutions with various boundary conditions are obtained, including the physically most relevant cases of periodic and antiperiodic ones. The latter are essential ingredients in a semiclassical treatment of finite temperature supersymmetric Yang-Mills theory. A detailed discussion of adjoint zero-modes in several other contexts is also presented.Comment: 40 latex pages and 5 eps figure

    Decoherence and relaxation in the interacting quantum dot system

    Full text link
    In this paper we study the low temperature kinetics of the electrons in the system composed of a quantum dot connected to two leads by solving the equation of motion. The decoherence and the relaxation of the system caused by the gate voltage noise and electron-phonon scattering are investigated. In order to take account of the strong correlation of the electrons in this system, the quasi-exact wave functions are calculated using an improved matrix product states algorithm. This algorithm enables us to calculate the wave functions of the ground state and the low lying excited states with satisfied accuracy and thus enables us to study the kinetics of the system more effectively. It is found that although both of these two mechanisms are proportional to the electron number operator in the dot, the kinetics are quite different. The noise induced decoherence is much more effective than the energy relaxation, while the energy relaxation and decoherence time are of the same order for the electron-phonon scattering. Moreover, the noise induced decoherence increases with the lowering of the dot level, but the relaxation and decoherence due to the electron-phonon scattering decrease.Comment: Minor revision. Add journal referenc

    Graphene Synthesis Using a CVD Reactor and a Discontinuous Feed of Gas Precursor at Atmospheric Pressure

    Get PDF
    The present work shows a new method in order to cost-effectively achieve the synthesis of graphene by Chemical Vapor Deposition (CVD). Unlike most usual processes, where precursors such as argon, H2, CH4, and high purity copper foil are used, the proposed method has replaced the previous ones by N2, N2 (90%) : H2 (10%), C2H2, and electrolytic copper (technical grade) since the use of industrialized precursors helps reduce production costs. On the other hand, the process was modified from a continuous flow system with vacuum to a discontinuous one at atmospheric pressure, eliminating the use of vacuum pump. In addition, this modification optimized the consumption of gases, which reduced the waste and the emission of pollutant gases into the atmosphere. Graphene films were grown under different gas flowrates and temperatures. Then, the obtained material was characterized by TEM, Raman spectroscopy, and AFM, confirming the presence of few graphene layers. In brief, the growth time was reduced to six minutes with acetylene as a carbon precursor at 1000°C and at atmospheric pressure, with a flow rate of 30 sccm. Finally, the reported conditions can be used for the synthesis of good quality graphene films in industrial applications

    Grapevine leaf uptake of mineral elements influenced by sugar foam amendment of an acidic soil

    Get PDF
    The use of sugar foam (industrial waste from sugar beet extraction) as an acidic soil (raña) liming agent has been studied in a singular winegrowing region. The contents of the major elements (Al, Ca, Fe, K, Na, Mg, S, Si) and trace elements (As, Ba, Ce, Co, Cr, Cs, Cu, Ga, Hf, La, Mo, Nb, Nd, Ni, Pb, Rb, Sc, Sn, Sr, Ta, Th, U, V, W, Y, Zn, Zr) in the original soil, the amended soil and in grapevine leaves has been measured by X-ray fluorescence. The addition of sugar foam modified the agronomic properties of the original soil. The amendment caused a slight increase in major elements (Ca, 10.4 g·kg-1; Mg, 1.9 g·kg-1 and K, 12.9 g·kg-1) and decreased Al (from 62 to 57.8 g·kg-1) and Fe (from 41.2 to 26.5 g·kg-1) content. Regarding trace elements, there was an increase in levels of Ba, Rb and Sr in the amended soil in comparison to the original soil. The major elements that accumulated in the vine leaf were Ca, Mg and S (Biological Absorption Coefficient, BAC, greater than 1). As for trace elements in leaf, Ba and Sr had a "medium" BAC (0.27 and 0.8, respectively) whereas Rb had a "slight"value (0.08). It is worth noting that the bioaccumulation rate of Zn was greater than 1. The use of sugar foam as a liming agent did not have a negative effect on the absorption of major and trace elements in vine leaves and led to improved BAC values for essential elements in the grapevine. The treatment did not increase the amount of trace elements in the soil above the reference levels for the region.

    Synthesis, structural characterization and electrocatalytic properties of cobalt phosphides and pyrophosphates derived from glyphosine

    Get PDF
    Póster presentado en el XXX Simposio del GE3CMetal phosphonates (MPs), a subclass of coordination polymers, result from the bonding of phosphonic acids (RPO32-) with metal ions, giving rise to an uniformly dispersion of the metal sites at the atomic scale. This characteristic allows the preparation of metal-phosphorous-based nano-carbon composites by a simple one-step pyrolysis, what makes them very attractive precursors of Non-Precious Metal Catalysts (NPMCs). Herein, we report the synthesis, characterization and electrochemical properties of three cobalt(II) coordination polymers derived from the glycine-N,N-bis(methylenenphosphonic acid) (BPMGLY), with formula [Co(C4H9O8NP2(H2O)2]·nH2O (n=0, 2). In contrast with the zero-dimensional structure of [Co(C4H9O8NP2(H2O)2]·2H2O (Co-BPMGLY-I), the two new polymorphs synthesized, Co(C4H9O8NP2(H2O)2 (Co-BPMGLY-II and Co-BPMGLY-III), whose structures have been solved from powder diffraction data, show two-dimensional frameworks with different connectivity between the Co2+ ions and the ligand within the sheets. These MPs were used as precursors of NPMCs by pyrolyzing them under 5%-H2/Ar at different temperatures. The electrochemical behavior of the resulting compounds, mainly crystalline cobalt pyrophosphates and/or phosphides, is fully studied regarding to the Oxygen Evolution and Reduction Reactions (OER and ORR, respectively) as well as Hydrogen Evolution Reaction (HER). Cobalt phosphide (CoP) derived from Co-BPMGLY-I displayed the best results, showing an overpotential of 156 mV for HER.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyectos nacionales MAT2016-77648-R y PID2019-110249RB-I0
    corecore