59 research outputs found

    Synthesis, structures and luminescence properties of metal-organic frameworks based on lithium-lanthanide and terephthalate

    Get PDF
    Metal-organic frameworks assembled from Ln(III), Li(I) and rigid dicarboxylate ligand, formulated as [LiLn(BDC)2(H2O)·2(H2O)] (MS1-6,7a) and [LiTb(BDC)2] (MS7b) (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid), were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a) and a new monoclinic C2/c phase (MS7b). All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA), vibrational spectroscopy (FTIR), and scanning electron microscopy (SEM-EDX). The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex) and O6-O7 (edge). Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3) edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual ÎČ-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6) are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.Financial support from Spanish Ministerio de EconomĂ­a y Competitividad (MINECO-13-MAT2013-40950-R, and FPI grant BES-2011-046948 to MSM.A.) and Gobierno del Principado de Asturias (GRUPIN14-060), and El Fondo Europeo de Desarrollo Regional (FEDER) are acknowledged.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)

    Green and blue materials for the ceramic industry from pink MgCoxNi1-xSiO4 (0 ≀ x ≀ 1) solid solutions

    Get PDF
    In this study, MgCoxNi1-xSiO4 (0.0 ≀ x ≀ 1.0) solid solutions with an olivine structure were synthetized via the chemical coprecipitation method and materials with a smaller M(II) (M = Co, Ni) amount than Co2SiO4 and Ni2SiO4 compounds were obtained. At 1200 °C, the Co(II) and Ni(II) were randomly distributed in the MgCoxNi1-xSiO4 (0.0 ≀ x ≀ 1.0) solid solutions with the olivine structure, but the occupation of Co(II) and Ni(II) ions in M1 (4a) octahedral sites was obtained at a higher level than in M2 (4c) octahedral sites. The Mg(II) ions prefer the M2 sites. This preference explains the main contribution of the M1 sites in spectra of octahedral Co(II) ions and the M1-O and M2-O distances jointly explain the pink colour of the MgCoxNi1-xSiO4 (0.0 ≀ x ≀ 1.0) solid solutions, while the colour of Co2SiO4 is blue. Spectra can be interpreted as the sum of Ni(II) and Co(II) ions in octahedral sites. When these solid solutions are enamelled, the pink colouring changes to green or blue because of the presence of tetrahedral Co(II).Funding for open access charge: CRUE-Universitat Jaume

    Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO2 Anatase

    Get PDF
    This work was financially supported by Spanish MINECO (MAT2013-40950-R, MAT2016-78155-C2-1-R, and CTQ2014-52956-C3-1-R), Gobierno del Principado de Asturias (GRUPIN14-060 and GRUPIN14-078), FEDER and South Ural State University thanks for the support the Ministry of Education and Science of the Russian Federation (grant No 16.2674.2014/K

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≄ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≄ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≄80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≄80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≄80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≄80 years; p = 0.003).Independent predictors of mortality were age ≄ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≄ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≄ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID‑19

    Get PDF
    Background. COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. Methods. A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. Results. The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183–12.968], 0.025), viral RNA load (N1) (1.962 [1.244–3.096], 0.004); viral RNA load (N2) (2.229 [1.382–3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). Conclusions. SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.This work was supported by awards from the Canadian Institutes of Health Research, the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding initiative (CIHR OV2 – 170357), Research Nova Scotia (DJK), Atlantic Genome/Genome Canada (DJK), Li-Ka Shing Foundation (DJK), Dalhousie Medical Research Foundation (DJK), the “Subvenciones de concesión directa para proyectos y programas de investigación del virus SARS‐CoV2, causante del COVID‐19”, FONDO–COVID19, Instituto de Salud Carlos III (COV20/00110, CIBERES, 06/06/0028), (AT) and fnally by the “Convocatoria extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la fnanciación de proyectos de investigación en enfermedad COVID-19” (GRS COVID 53/A/20) (CA). DJK is a recipient of the Canada Research Chair in Translational Vaccinology and Infammation. APT was funded by the Sara Borrell Research Grant CD018/0123 funded by Instituto de Salud Carlos III and co-fnanced by the European Development Regional Fund (A Way to Achieve Europe programme). The funding sources did not play any role neither in the design of the study and collection, not in the analysis, in the interpretation of data or in writing the manuscript
    • 

    corecore