5 research outputs found

    Population Structure and Growth of the Threatened Pen Shell, Pinna rudis (Linnaeus, 1758) in a Western Mediterranean Marine Protected Area

    Get PDF
    Coastal ecosystems are being extensively degraded by human activities. Benthic, slow-growing and long-lived species are highly vulnerable to these impacts. Marine protected areas may avoid biodiversity losses through habitat protection. The pen shell Pinna rudis is a protected species, but scarce data are available on its ecology and biology. The present study is a comprehensive ecological study encompassing several unknown aspects of the growth and inner record in relation to habitat types, density and size distribu¬tion. During the summers of 2011, 2012 and 2013, a total of 418 strip transects were conducted by scuba diving in the Marine Pro¬tected Area of Cabrera National Park (39.14° N, 2.96° E). Samples were conducted across different habitats and depths, exploring 152,146.35 m2 in total. A large range of sizes and ages were recorded within the park with densities ranging from 0 to 6.89 ind./100 m2. Most pen shells were patchily distributed and concentrated mainly in caves. Two hotspots represented the highest densities ever recorded worldwide, showing a potential link to high larval accumulation and settlement. The population size structure showed a unimodal distribution with shell width ranging from 6.2 to 25.0 cm, with an average shell width of 16.0 ± 3.4 cm. The absolute growth was asymptotic, with a maximum age of 28-31 years and length of 45 cm. This study on the biology and ecology of a well-established population of Pinna rudis in the Western Mediterranean could set a baseline for the conservation of this species in other areasVersión del editor0,56

    Scope for growth and dietary needs of Mediteranean Pinnids maintained in captivity

    Get PDF
    Abstract Background: The measurement of the energy available for growth (scope of growth, SFG) can be used in bivalves to make a long-term prediction in a short-term experiment of the condition of the individual. In order to tackle the best conditions for captive maintenance of Mediterranean Pinnids, a SFG study was conducted using Pinna rudis as a model species. Three diets were examined to test the viability of live microalgae and commercial products: i) a control diet using 100% of live microalgae based on the species Isochrysis galbana (t-ISO), ii) a 100% of commercial microalgae diet based on the product Shellfish Diet 1800®, and iii) a 50/50% mix diet of I. galbana (t-ISO) and Shellfish Diet 1800®. Results: SFG results showed significant differences among diets in the physiological functions measured and suggested lower acceptability and digestibility of the commercial product. Negative SFG values were obtained for the commercial diet which indicates that it should be rejected for both Pinnid maintenance. The mixed diet showed improved physiological performance compared to the commercial diet, resulting in a higher SFG that had no significant differences with the control diet. However, in the long-term, the lower digestibility of the mixed diet compared to the control diet could lead to a deterioration of individuals’ conditions and should be considered cautiously. Conclusions: This work represents the first case study of SFG in Pinna spp. and provides fundamental data on dietary needs for the critically endangered species, P. nobilis.En prens

    Wide-Geographic and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to Critically Endangered Species

    Get PDF
    A mass mortality event (MME) affecting the fan mussel Pinna nobilis was first detected in Spain in autumn 2016 and spread north- and eastward through the Mediterranean Sea. Various pathogens have been blamed for contributing to the MME, with emphasis in Haplosporidium pinnae, Mycobacterium sp. and Vibrio spp. In this study, samples from 762 fan mussels (necropsies from 263 individuals, mantle biopsies from 499) of various health conditions, with wide geographic and age range, taken before and during the MME spread from various environments along Mediterranean Sea, were used to assess the role of pathogens in the MME. The number of samples processed by both histological and molecular methods was 83. The most important factor playing a main role on the onset of the mass mortality of P. nobilis throughout the Mediterranean Sea was the infection by H. pinnae. It was the only non-detected pathogen before the MME while, during MME spreading, its prevalence was higher in sick and dead individuals than in asymptomatic ones, in MME-affected areas than in non-affected sites, and it was not associated with host size, infecting both juveniles and adults. Conversely, infection with mycobacteria was independent from the period (before or during MME), from the affection of the area by MME and from the host health condition, and it was associated with host size. Gram (-) bacteria neither appeared associated with MME.En prens
    corecore