9 research outputs found

    Peripheral microcirculatory alterations are associated with the severity of acute respiratory distress syndrome in COVID-19 patients admitted to intermediate respiratory and intensive care units

    Get PDF
    COVID-19; Endothelial dysfunction; MicrocirculationCOVID-19; Disfunción endotelial; MicrocirculaciónCOVID-19; Disfunció endotelial; MicrocirculacióBackground COVID-19 is primarily a respiratory disease; however, there is also evidence that it causes endothelial damage in the microvasculature of several organs. The aim of the present study is to characterize in vivo the microvascular reactivity in peripheral skeletal muscle of severe COVID-19 patients. Methods This is a prospective observational study carried out in Spain, Mexico and Brazil. Healthy subjects and severe COVID-19 patients admitted to the intermediate respiratory (IRCU) and intensive care units (ICU) due to hypoxemia were studied. Local tissue/blood oxygen saturation (StO2) and local hemoglobin concentration (THC) were non-invasively measured on the forearm by near-infrared spectroscopy (NIRS). A vascular occlusion test (VOT), a three-minute induced ischemia, was performed in order to obtain dynamic StO2 parameters: deoxygenation rate (DeO2), reoxygenation rate (ReO2), and hyperemic response (HAUC). In COVID-19 patients, the severity of ARDS was evaluated by the ratio between peripheral arterial oxygen saturation (SpO2) and the fraction of inspired oxygen (FiO2) (SF ratio). Results Healthy controls (32) and COVID-19 patients (73) were studied. Baseline StO2 and THC did not differ between the two groups. Dynamic VOT-derived parameters were significantly impaired in COVID-19 patients showing lower metabolic rate (DeO2) and diminished endothelial reactivity. At enrollment, most COVID-19 patients were receiving invasive mechanical ventilation (MV) (53%) or high-flow nasal cannula support (32%). Patients on MV were also receiving sedative agents (100%) and vasopressors (29%). Baseline StO2 and DeO2 negatively correlated with SF ratio, while ReO2 showed a positive correlation with SF ratio. There were significant differences in baseline StO2 and ReO2 among the different ARDS groups according to SF ratio, but not among different respiratory support therapies. Conclusion Patients with severe COVID-19 show systemic microcirculatory alterations suggestive of endothelial dysfunction, and these alterations are associated with the severity of ARDS. Further evaluation is needed to determine whether these observations have prognostic implications. These results represent interim findings of the ongoing HEMOCOVID-19 trial. Trial registration ClinicalTrials.gov NCT04689477. Retrospectively registered 30 December 2020.The study has received funding from Fundació CELLEX Barcelona, Fundació Mir-Puig, Ajuntament de Barcelona, Agencia Estatal de Investigación (PHOTOMETABO, PID2019-106481RB-C31/10.13039/501100011033), the "Severo Ochoa" Programme for Centers of Excellence in R&D (CEX2019-000910-S), the Obra social “La Caixa” Foundation (LlumMedBcn), Generalitat de Catalunya (CERCA, AGAUR-2017-SGR-1380, RIS3CAT-001-P-001682 CECH), European Commission Horizon 2020 (FEDER, 688303/LUCA, 101016087/VASCOVID, 87114/LASERLAB-EUROPE V). We also acknowledge the collaboration and an instrument loan from Artinis (Netherlands)

    The Role Of Omega-3 Polyunsaturated Fatty Acids In The Treatment Of Patients With Acute Respiratory Distress Syndrome: A Clinical Review

    Get PDF
    Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect of omega-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use of omega-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness of omega-3 polyunsaturated fatty acids

    Evaluation of a PET Prototype Using LYSO:Ce Monolithic Detector Block

    Get PDF
    We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    The Role Of Omega-3 Polyunsaturated Fatty Acids In The Treatment Of Patients With Acute Respiratory Distress Syndrome: A Clinical Review

    No full text
    Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect of omega-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use of omega-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness of omega-3 polyunsaturated fatty acids

    The Role of Omega-3 Polyunsaturated Fatty Acids in the Treatment of Patients with Acute Respiratory Distress Syndrome: A Clinical Review

    No full text
    Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect of ω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use of ω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness of ω-3 polyunsaturated fatty acids

    Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study)

    No full text
    Background We aimed to assess the efficacy of a closed-loop oxygen control in critically ill patients with moderate to severe acute hypoxemic respiratory failure (AHRF) treated with high flow nasal oxygen (HFNO). Methods In this single-centre, single-blinded, randomized crossover study, adult patients with moderate to severe AHRF who were treated with HFNO (flow rate ≥ 40 L/min with FiO2 ≥ 0.30) were randomly assigned to start with a 4-h period of closed-loop oxygen control or 4-h period of manual oxygen titration, after which each patient was switched to the alternate therapy. The primary outcome was the percentage of time spent in the individualized optimal SpO2 range. Results Forty-five patients were included. Patients spent more time in the optimal SpO2 range with closed-loop oxygen control compared with manual titrations of oxygen (96.5 [93.5 to 98.9] % vs. 89 [77.4 to 95.9] %; p < 0.0001) (difference estimate, 10.4 (95% confidence interval 5.2 to 17.2). Patients spent less time in the suboptimal range during closed-loop oxygen control, both above and below the cut-offs of the optimal SpO2 range, and less time above the suboptimal range. Fewer number of manual adjustments per hour were needed with closed-loop oxygen control. The number of events of SpO2 < 88% and < 85% were not significantly different between groups. Conclusions Closed-loop oxygen control improves oxygen administration in patients with moderate-to-severe AHRF treated with HFNO, increasing the percentage of time in the optimal oxygenation range and decreasing the workload of healthcare personnel. These results are especially relevant in a context of limited oxygen supply and high medical demand, such as the COVID-19 pandemic. Trial registration The HILOOP study was registered at www.clinicaltrials.gov under the identifier NCT04965844.</p

    Peripheral microcirculatory alterations are associated with the severity of acute respiratory distress syndrome in COVID-19 patients admitted to intermediate respiratory and intensive care units

    No full text
    Background: COVID-19 is primarily a respiratory disease; however, there is also evidence that it causes endothelial damage in the microvasculature of several organs. The aim of the present study is to characterize in vivo the microvascular reactivity in peripheral skeletal muscle of severe COVID-19 patients. Methods: this is a prospective observational study carried out in Spain, Mexico and Brazil. Healthy subjects and severe COVID-19 patients admitted to the intermediate respiratory (IRCU) and intensive care units (ICU) due to hypoxemia were studied. Local tissue/blood oxygen saturation (StO2) and local hemoglobin concentration (THC) were non-invasively measured on the forearm by near-infrared spectroscopy (NIRS). A vascular occlusion test (VOT), a three-minute induced ischemia, was performed in order to obtain dynamic StO2 parameters: deoxygenation rate (DeO2), reoxygenation rate (ReO2), and hyperemic response (HAUC). In COVID-19 patients, the severity of ARDS was evaluated by the ratio between peripheral arterial oxygen saturation (SpO2) and the fraction of inspired oxygen (FiO2) (SF ratio). Results: healthy controls (32) and COVID-19 patients (73) were studied. Baseline StO2 and THC did not differ between the two groups. Dynamic VOT-derived parameters were significantly impaired in COVID-19 patients showing lower metabolic rate (DeO2) and diminished endothelial reactivity. At enrollment, most COVID-19 patients were receiving invasive mechanical ventilation (MV) (53%) or high-flow nasal cannula support (32%). Patients on MV were also receiving sedative agents (100%) and vasopressors (29%). Baseline StO2 and DeO2 negatively correlated with SF ratio, while ReO2 showed a positive correlation with SF ratio. There were significant differences in baseline StO2 and ReO2 among the different ARDS groups according to SF ratio, but not among different respiratory support therapies. Conclusion: patients with severe COVID-19 show systemic microcirculatory alterations suggestive of endothelial dysfunction, and these alterations are associated with the severity of ARDS. Further evaluation is needed to determine whether these observations have prognostic implications. These results represent interim findings of the ongoing HEMOCOVID-19 trial. Trial registration ClinicalTrials.gov NCT04689477 . Retrospectively registered 30 December 2020.The study has received funding from Fundació CELLEX Barcelona, Fundació Mir-Puig, Ajuntament de Barcelona, Agencia Estatal de Investigación (PHOTOMETABO, PID2019-106481RB-C31/10.13039/501100011033), the "Severo Ochoa" Programme for Centers of Excellence in R&D (CEX2019-000910-S), the Obra social “La Caixa” Foundation (LlumMedBcn), Generalitat de Catalunya (CERCA, AGAUR-2017-SGR-1380, RIS3CAT-001-P-001682 CECH), European Commission Horizon 2020 (FEDER, 688303/LUCA, 101016087/VASCOVID, 87114/LASERLAB-EUROPE V). We also acknowledge the collaboration and an instrument loan from Artinis (Netherlands)
    corecore