159 research outputs found

    Heat fluxes between the Guadalquivir river and the Gulf of CĂĄdiz Continental Shelf

    Get PDF
    An 18-year time series of daily sea surface temperature of Gulf of Cadiz and an 18-month time series of temperature collected in the vicinity of the Guadalquivir estuary mouth have been analyzed to investigate the heat exchange between the estuary and the adjacent continental shelf. The first time identifies a continental shelf area where seasonal thermal oscillation signal (amplitudes and phase) changes abruptly. In order to explain this anomaly, the second data set allows a description of thermal fluctuations in a wide range of frequencies and an estimation of the upstream heat budget of the Guadalquivir estuary. Results show that high frequency thermal signal, diurnal and semidiurnal, and water flux signal through Guadalquivir mouth, mainly semidiurnal, apparently interact randomly to give a small exchange of thermal energy at high frequency. There is no trace, at the estuary's mouth, of daily heat exchanges with intertidal mudflats probably because it tends to cancel on daily time scales. Results also show that fluctuations of estimated air-sea fluxes force fluctuations of temperature in a quite homogeneous estuarine, with a delay of 20 days. The along-channel thermal energy gradient reaches magnitudes of 300-400 J m-4 near the mouth during the summer and winter and drives the estuary-shelf exchange of thermal energy at seasonal scale. Particularly, the thermal heat imported by the estuary from the shelf area during late fall-winter-early spring of 2008/2009 is balanced by the thermal heat that the estuary exports to the shelf area during late spring-summer of 2008. In summary, Guadalquivir river removes/imports excess of thermal energy towards/from the continental shelf seasonally, as a mechanism to accommodate excess of heat from one side respect to the other side.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. Autoridad Portuaria de Sevilla (APS

    3D hydrodynamic model as a tool for more efficient port management and operations.

    Get PDF
    Ports have been attempting to increase their competitiveness by enhancing their productivity and operate in a more environmentally friendly way. The Port of Seville is located in the Guadalquivir River in the south of Spain and it is the unique Spanish inland port. The estuary has generated and is still generating conflicts of interests. The access channel to the port is being periodically dredged, the natural course has been anthropologically modified several times, original salt marshes have been transformed to grow rice and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO_MAB Biosphere Reserve. Despite its socio-economic and environmental significance there is a surprising lack of scientific and technical information about the environmental interactions between the port activities and the Guadalquivir estuary stakeholders. A 3D hydrodynamic model has been developed to study the tidal regime, water circulation, temperature and salinity distributions, flooding areas and the sediment dynamics in the estuary. The model output has been validated with in situ current speed, direction, water elevation and also with temperature and salinity measurements. Good agreement between modeled and real measurements have been obtained. Our preliminary results show that the vessel traffic management could be improved by using the tidal elevations and currents calculated by the model in the whole estuary. The interactions among the port activities (mainly due of changes in the sediments dynamics), the watershed management and the saline intrusion evolution will be studied in detail. 3D Hydrodynamic Modelling provide spatially explicit information on the key variables governing the dynamics of estuarine areas. The numerical model is a powerful tool to effectively guide the management and operations of ports located in a complex socio-ecological systems.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Cambio Climåtico en el Mediterråneo Español

    Get PDF
    Semi-enclosed and bounded by three continents, the Mediterranean sea is a region highly vulnerable to human activities, i.e.: the population surge along the coasts, the tourism pressure, the maritime traffic, the agriculture and the fishery exploitation, all have a potential impact on the Mediterranean environment. In addition, effective initiatives against the Global Climate Change need to be attempted in order to preserve our marine environment and to achieve a sustainable development of its resources. Prevention and adaptation to this new threat must be based on the rigorous and scientific knowledge accomplished through the systematic and continuous observation of the sea, and through the collection of multidisciplinary time-series and the subsequent analysis. This report responds to this necessity. The main goals of the Instituto Español de Oceanografía (IEO) are to generate scientific knowledge, as well as to assess and to inform the public about the state of the sea. The IEO is primary focussed on the study of the variety of phenomena influencing spanish coasts, including the process of Climate Change. To meet these objectives, a large set of actions have been planned. Some of them are already being implemented, such as a multidisciplinary observation system in the shelf and continental slope waters, or periodic scientific reports dealing with the detection and quantification of Climate Change effects and of other possible environmental impacts. The present report is the first of a series of future contributions. Besides the IEO, other Spanish institutions such as the ICM (CSIC), Puertos del Estado (PE), the IMEDEA (CSIC), the UMA, the UIB and the INM, involved in the monitoring, analysis and modelling of the Mediterranean sea, have also participated in it. The results show clear evidences of the effect of Climate Change in the physical properties of the mediterranean waters since 1948; in particular, the temperature and salinity increase of the deep waters, the accelerated rise of sea level since the early 1990s, and the air and sea surface temperature increase during the second half of the XX century.Versión del edito

    TRAIL/TRAIL Receptor System and Susceptibility to Multiple Sclerosis

    Get PDF
    The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10−4, OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10−5, OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks : The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
    • 

    corecore