1,416 research outputs found
Remote manipulator dynamic simulation
A simulator to generate the real time visual scenes required to perform man in the loop investigations of remote manipulator application and design concepts for the space shuttle is described. The simulated remote manipulator consists of a computed display system that uses a digital computer, the electronic scene generator, an operator's station, and associated interface hardware. A description of the capabilities of the implemented simulation is presented. The mathematical models and programs developed for the simulation are included
Direct entropy determination and application to artificial spin ice
From thermodynamic origins, the concept of entropy has expanded to a range of
statistical measures of uncertainty, which may still be thermodynamically
significant. However, laboratory measurements of entropy continue to rely on
direct measurements of heat. New technologies that can map out myriads of
microscopic degrees of freedom suggest direct determination of configurational
entropy by counting in systems where it is thermodynamically inaccessible, such
as granular and colloidal materials, proteins and lithographically fabricated
nanometre-scale arrays. Here, we demonstrate a conditional-probability
technique to calculate entropy densities of translation-invariant states on
lattices using limited configuration data on small clusters, and apply it to
arrays of interacting nanometre-scale magnetic islands (artificial spin ice).
Models for statistically disordered systems can be assessed by applying the
method to relative entropy densities. For artificial spin ice, this analysis
shows that nearest-neighbour correlations drive longer-range ones.Comment: 10 page
Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC
We present results from a harmonic decomposition of two-particle azimuthal
correlations measured with the STAR detector in Au+Au collisions for energies
ranging from GeV to 200 GeV. The third harmonic
, where is the
angular difference in azimuth, is studied as a function of the pseudorapidity
difference between particle pairs . Non-zero
{\vthree} is directly related to the previously observed large-
narrow- ridge correlations and has been shown in models to be
sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase.
For sufficiently central collisions, persist down to an energy of
7.7 GeV suggesting that QGP may be created even in these low energy collisions.
In peripheral collisions at these low energies however, is
consistent with zero. When scaled by pseudorapidity density of charged particle
multiplicity per participating nucleon pair, for central
collisions shows a minimum near {\snn} GeV.Comment: 7 pages, 4 figures, for submission to Phys. Rev. Let
Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions
We present measurements of and elliptic flow, , at
midrapidity in Au+Au collisions at 200, 62.4, 39, 27,
19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry,
, based on data from the STAR experiment at RHIC. We find that
() elliptic flow linearly increases (decreases) with charge asymmetry
for most centrality bins at and higher.
At , the slope of the difference of
between and as a function of exhibits a
centrality dependence, which is qualitatively similar to calculations that
incorporate a chiral magnetic wave effect. Similar centrality dependence is
also observed at lower energies.Comment: 6 pages, 4 figure
production at low transverse momentum in p+p and d+Au collisions at = 200 GeV
We report on the measurement of production in the dielectron
channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at =
200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The
transverse momentum spectra in p+p for < 4 GeV/c and d+Au
collisions for < 3 GeV/c are presented. These measurements extend the
STAR coverage for production in p+p collisions to low .
The from the measured invariant cross section in
p+p and d+Au collisions are evaluated and compared to similar measurements at
other collision energies. The nuclear modification factor for is
extracted as a function of and collision centrality in d+Au and
compared to model calculations using the modified nuclear Parton Distribution
Function and a final-state nuclear absorption cross section
Observation of meson nuclear modifications in Au+Au collisions at = 200 GeV
We report the first measurement of charmed-hadron () production via the
hadronic decay channel () in Au+Au collisions at
= 200\,GeV with the STAR experiment. The charm
production cross-section per nucleon-nucleon collision at mid-rapidity scales
with the number of binary collisions, , from + to central Au+Au
collisions. The meson yields in central Au+Au collisions are strongly
suppressed compared to those in + scaled by , for transverse
momenta GeV/, demonstrating significant energy loss of charm
quarks in the hot and dense medium. An enhancement at intermediate is
also observed. Model calculations including strong charm-medium interactions
and coalescence hadronization describe our measurements.Comment: 7 pages including author list, 4 figures, submit to PRL with revised
versio
- …
