111 research outputs found

    Структура амилоидных агрегатов лизоцима по данным малоуглового рассеяния рентгеновских лучей

    Get PDF
    Методом малоуглового рассеяния рентгеновских лучей исследована структура филаментных амилоидных агрегатов лизоцима яичного белка в воде. Для описания экспериментальных данных использованы различные цилиндрические модели, среди которых лучшее соответствие показывает модель длинной спирали. При сравнении полученных результатов с данными малоуглового рассеяния нейтронов обнаружено влияние тяжелого компонента растворителя (смеси H2O/D2O) на структуру филаментов

    Measurement of glucose exclusion from the fully hydrated DOPE inverse hexagonal phase

    Get PDF
    The degree of exclusion of glucose from the inverse hexagonal HII phase of fully hydrated DOPE is determined using contrast variation small angle neutron scattering and small angle X-ray scattering. The presence of glucose is found to favour the formation of the non-lamellar HII phase over the fluid lamellar phase, over a wide range of temperatures, while having no significant effect on the structure of the HII phase. Glucose is preferentially excluded from the lipid¿water interface resulting in a glucose concentration in the HII phase of less than half that in the coexisting aqueous phase. The degree of exclusion is quantified and the results are consistent with a hydration layer of pure water adjacent to the lipid head groups from which glucose is excluded. The osmotic gradient created by the difference in glucose concentration is determined and the influence of glucose on the phase behaviour of non-lamellar phase forming lipid systems is discussed

    Dendritic Core-Shell Macromolecules Soluble in Supercritical Carbon Dioxide

    Full text link
    International audienceSupercritical carbon dioxide has found strong interest as a reaction medium recently.1,2 As an alternative to organic solvents, compressed carbon dioxide is toxicologically harmless, nonflammable, inexpensive, and environmentally benign.3 Its accessible critical temperature and pressure (Tc ) 31 °C, Pc ) 7.38 MPa, Fc ) 0.468 g cm-3)4 and the possibility of tuning the solvent-specific properties between the ones of liquid and gas are very attractive

    Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

    Get PDF
    Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition–fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA–PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature 1H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions

    RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies

    Get PDF
    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by 1H NMR spectroscopy and relatively low diblock copolymer polydispersities (Mw/Mn < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMAx diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG 113-PHPMAx phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications

    Study of Mixed Micelles with Varying Temperature by Small-Angle Neutron Scattering

    No full text

    Vehicles of inverted hexagonal liquid crystalline lipid phases self-assembled at room temperature

    No full text
    Dispersed nonlamellar lipid phases offer one of the most important contemporary ways for the development of newmaterials for drug delivery vehicles. The structure of self-assembled vehicles of an inverted hexagonal type liquid crystalline(LC) lipid phase was investigated by means of small angle X-ray scattering (SAXS), quasi-elastic light scattering (QELS),and cross-polarised light optical microscopy (POM). A notable difference was established between the SAXS patterns of thebulk inverted hexagonal (HII) phase and the corresponding nanoparticles (NPs) dispersion. The structure of the hexosomeNPs appeared to be more hydrated than that of the bulk HII phase. Both systems were stable at room temperature

    SANS Study of Poly(ethylene glycol) Solutions in D2OD_2O

    No full text
    Poly(ethylene glycol) is used for coating of colloidal particles and other surfaces for gaining biocompatibility. Particularly, it can be introduced into magnetic fluids. The aim of the current study was to reveal the structural characteristics of poly(ethylene glycol) in neat D2OD_2O using small-angle neutron scattering technique. Solutions of poly(ethylene glycol) (at temperature of 37°C) with different molecular weights in an interval of 400-20000 were investigated. It is concluded that at low concentrations (less than 2% of mass fraction) poly(ethylene glycol) molecules behave as Gaussian coils
    corecore