11 research outputs found

    Compensatory Mechanisms Modulate the Neuronal Excitability in a Kainic Acid-Induced Epilepsy Mouse Model

    Get PDF
    Epilepsy is one of the most common neurological disorders affecting millions of people. Due to the complicated and unclear mechanisms of epilepsy, still a significant proportion of epilepsy patients remain poorly controlled. Epilepsy is characterized by convulsive seizures that are caused by increased excitability. In this study, by using kainic acid (KA)-induced epilepsy mice, we investigated the neuronal activities and revealed the neuronal compensatory mechanisms after KA-induced toxic hyperexcitability. The results indicate that both phasic inhibition induced by enhanced inhibitory synaptic activity and tonic inhibition mediated by activated astrocytes participate in the compensatory mechanisms. Compensatory mechanisms were already found in various neuronal disorders and were considered important in protecting nervous system from toxic hyperexcitability. This study hopefully will provide valuable clues in understanding the complex neuronal mechanisms of epilepsy, and exploring potential clinical treatment of the disease

    Ergodic Secrecy Rate of RIS-Assisted Communication Systems in the Presence of Discrete Phase Shifts and Multiple Eavesdroppers

    No full text
    International audienceThis letter investigates the ergodic secrecy rate (ESR) of a reconfigurable intelligent surface (RIS)-assisted communication system in the presence of discrete phase shifts and multiple eavesdroppers (Eves). In particular, a closed-form approximation of the ESR is derived for both non-colluding and colluding Eves. The analytical results are shown to be accurate when the number of reflecting elements of the RIS N is large. Asymptotic analysis is provided to investigate the impact of N on the ESR, and it is proved that the ESR scales with log 2 N for both non-colluding and colluding Eves. Numerical results are provided to verify the analytical results and the obtained scaling laws

    Spatial Variation of Soil Organic Carbon from Bamen Bay Mangrove in Southern China

    No full text
    Mangrove forests are large pools of soil organic carbon (SOC) found across the world, and play a vital role in global carbon (C) cycling. In this study, to investigate the effects of spatial factors on SOC in mangrove forests, soil samples at different depth layers from upper estuary (UE), lower estuary (LE), and tidal inlet (TI) in the Qinglangang mangrove forest in Southern China were collected and the differences in SOC among the layers and geomorphological settings were compared. The mean SOC content showed a pattern of LE (4.63 ± 1.28%) > UE (2.94 ± 0.73%) > TI (1.44 ± 0.33%). SOC content and storage decreased with soil depth in TI, but increased in UE. The total SOC storages (0–80 cm) of sites TU, UE, and LE, were 104.41 ± 16.63, 207.14 ± 44.83, and 228.78 ± 19.37 Mg/ha, respectively. The results suggested that top- and subsoil organic C content and storage were largely dependent on their specific location, which underwent different river-sea interactions and human activities. The SOC of the soil profile varied at different sites, implying that the current C storage of mangrove ecosystems can be accurately estimated by quantifying the C of sediments at sites

    Spatial Variation of Soil Organic Carbon from Bamen Bay Mangrove in Southern China

    No full text
    Mangrove forests are large pools of soil organic carbon (SOC) found across the world, and play a vital role in global carbon (C) cycling. In this study, to investigate the effects of spatial factors on SOC in mangrove forests, soil samples at different depth layers from upper estuary (UE), lower estuary (LE), and tidal inlet (TI) in the Qinglangang mangrove forest in Southern China were collected and the differences in SOC among the layers and geomorphological settings were compared. The mean SOC content showed a pattern of LE (4.63 ± 1.28%) > UE (2.94 ± 0.73%) > TI (1.44 ± 0.33%). SOC content and storage decreased with soil depth in TI, but increased in UE. The total SOC storages (0–80 cm) of sites TU, UE, and LE, were 104.41 ± 16.63, 207.14 ± 44.83, and 228.78 ± 19.37 Mg/ha, respectively. The results suggested that top- and subsoil organic C content and storage were largely dependent on their specific location, which underwent different river-sea interactions and human activities. The SOC of the soil profile varied at different sites, implying that the current C storage of mangrove ecosystems can be accurately estimated by quantifying the C of sediments at sites

    Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance

    No full text
    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr­(OH)<sub><i>x</i></sub> nanospheres (HPZNs) were immobilized in poly­(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb­(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb­(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification
    corecore