44 research outputs found

    Phase behaviour and dynamics in primitive models of molecular ionic liquids

    Get PDF
    The phase behaviour and dynamics of molecular ionic liquids are studied using primitive models and extensive computer simulations. The models account for size disparity between cation and anion, charge location on the cation, and cation-shape anisotropy, which are all prominent features of important materials such as room-temperature ionic liquids. The vapour-liquid phase diagrams are determined using high-precision Monte Carlo simulations, setting the scene for in-depth studies of ion dynamics in the liquid state. Molecular dynamics simulations are used to explore the structure, single-particle translational and rotational autocorrelation functions, cation orientational autocorrelations, self diffusion, viscosity, and frequency-dependent conductivity. The results reveal some of the molecular-scale mechanisms for charge transport, involving molecular translation, rotation, and association.Comment: 15 pages, 7 figure

    Charge ordering induces a smectic phase in oblate ionic liquid crystals

    Full text link
    We report a computer simulation study of an electroneutral mixture of oppositely charged oblate ellipsoids of revolution with aspect ratio A = 1/3. In contrast to hard or soft repulsive ellipsoids, which are purely nematic, this system exhibits a smectic-A phase in which charges of equal sign are counterintuitively packed in layers perpendicular to the nematic director

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    Accurate ab initio spin densities

    Get PDF
    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insights into chemically interesting features of the molecule under study such as the distribution of α\alpha- and β\beta-electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput. 2011, 7, 2740].Comment: 37 pages, 13 figure

    Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study

    Get PDF
    We use lattice Boltzmann simulations, in conjunction with Ewald summation methods, to investigate the role of hydrodynamic interactions in colloidal suspensions of dipolar particles, such as ferrofluids. Our work addresses volume fractions ϕ\phi of up to 0.20 and dimensionless dipolar interaction parameters λ\lambda of up to 8. We compare quantitatively with Brownian dynamics simulations, in which many-body hydrodynamic interactions are absent. Monte Carlo data are also used to check the accuracy of static properties measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic interactions slow down both the long-time and the short-time decays of the intermediate scattering function S(q,t)S(q,t), for wavevectors close to the peak of the static structure factor S(q)S(q), by a factor of roughly two. The long-time slowing is diminished at high interaction strengths whereas the short-time slowing (quantified via the hydrodynamic factor H(q)H(q)) is less affected by the dipolar interactions, despite their strong effect on the pair distribution function arising from cluster formation. Cluster formation is also studied in transient data following a quench from λ=0\lambda = 0; hydrodynamic interactions slow the formation rate, again by a factor of roughly two

    Land-use harmonization datasets for annual global carbon budgets

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordCode availability; The source code used to produce the core LUH2 datasets and the LUH2-GCB datasets, along with the sources and citations of necessary inputs, are archived at https://doi.org/10.5281/zenodo.3954113 (Chini et al., 2020a).Data availability: The data produced in this study are archived and publicly available at the NASA Oak Ridge National Laboratory Distributed Active Archive Center: https://doi.org/10.3334/ORNLDAAC/1851 (Chini et al, 2020b).Land-use change has been the dominant source of anthropogenic carbon emissions for most of the historical period and is currently one of the largest and most uncertain components of the global carbon cycle. Advancing the scientific understanding on this topic requires that the best data be used as input to state-of-The-Art models in well-organized scientific assessments. The Land-Use Harmonization 2 dataset (LUH2), previously developed and used as input for simulations of the 6th Coupled Model Intercomparison Project (CMIP6), has been updated annually to provide required input to land models in the annual Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2-GCB updates and extensions which incorporate annual wood harvest data updates from the Food and Agriculture Organization (FAO) of the United Nations for dataset years after 2015 and the History Database of the Global Environment (HYDE) gridded cropland and grazing area data updates (based on annual FAO cropland and grazing area data updates) for dataset years after 2012, along with extrapolations to the current year due to a lag of 1 or more years in the FAO data releases. The resulting updated LUH2-GCB datasets have provided global, annual gridded land-use and land-use-change data relating to agricultural expansion, deforestation, wood harvesting, shifting cultivation, regrowth and afforestation, crop rotations, and pasture management and are used by both bookkeeping models and dynamic global vegetation models (DGVMs) for the GCB. For GCB 2019, a more significant update to LUH2 was produced, LUH2-GCB2019 (10.3334/ORNLDAAC/1851, Chini et al., 2020b), to take advantage of new data inputs that corrected cropland and grazing areas in the globally important region of Brazil as far back as 1950. From 1951 to 2012 the LUH2-GCB2019 dataset begins to diverge from the version of LUH2 used for the World Climate Research Programme's CMIP6, with peak differences in Brazil in the year 2000 for grazing land (difference of 100g000gkm2) and in the year 2009 for cropland (difference of 77g000gkm2), along with significant sub-national reorganization of agricultural land-use patterns within Brazil. The LUH2-GCB2019 dataset provides the base for future LUH2-GCB updates, including the recent LUH2-GCB2020 dataset, and presents a starting point for operationalizing the creation of these datasets to reduce time lags due to the multiple input dataset and model latencies.NASAUS Department of Energy, Office of Science, Office of Biological and Environmental ResearchEuropean Union Horizon 202

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990-2018

    Get PDF
    Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990-2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011-2015, the CO2 land sources and sinks from NGHGI estimates report-90 Tg C yr-1 ± 30 Tg C yr-1 while all other BU approaches report a mean sink of-98 Tg C yr-1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr-1 ± 400 Tg C yr-1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of "CO2 flux"obtained from different approaches. The referenced datasets related to figures are visualized. © 2021 Ana Maria Roxana Petrescu et al

    Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: in search of diamonds

    Get PDF
    This work presents first insights into the dynamics of free-surface release clouds from dynamically compressed polystyrene and pyrolytic graphite at pressures up to 200 GPa, where they transform into diamond or lonsdaleite, respectively. These ejecta clouds are released into either vacuum or various types of catcher systems, and are monitored with high-speed recordings (frame rates up to 10 MHz). Molecular dynamics simulations are used to give insights to the rate of diamond preservation throughout the free expansion and the catcher impact process, highlighting the challenges of diamond retrieval. Raman spectroscopy data show graphitic signatures on a catcher plate confirming that the shock-compressed PS is transformed. First electron microscopy analyses of solid catcher plates yield an outstanding number of different spherical-like objects in the size range between ten(s) up to hundreds of nanometres, which are one type of two potential diamond candidates identified. The origin of some objects can unambiguously be assigned, while the history of others remains speculative

    Multiscale modeling and simulation of shock-wave impact failure in hard and soft matter

    No full text
    Understanding the mechanisms of failure in materials on various length- and time scales is a prerequisite for the design of new materials with desired superior properties such as high toughness or strength. On the macroscopic scale, many materials such as concrete or ceramics may be viewed as being homogeneous; however, on the scale of a few microns these materials often exhibit an inhomogeneous polyhedral granular structure which is known to influence its macroscopic mechanical and optical properties, see e.g. Steinhauser [1]

    Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset

    Get PDF
    The carbon flux due to land-use and land-cover change (net LULCC flux) historically contributed to a large fraction of anthropogenic carbon emissions while at the same time being associated with large uncertainties. This study aims to compare the contribution of several sensitivities underlying the net LULCC flux by assessing their relative importance in a bookkeeping model (Bookkeeping of Land Use Emissions, BLUE) based on a LULCC dataset including uncertainty estimates (the Land-Use Harmonization 2 (LUH2) dataset). The sensitivity experiments build upon the approach of Hurtt et al. (2011) and compare the impacts of LULCC uncertainty (a high, baseline and low land-use estimate), the starting time of the bookkeeping model simulation (850, 1700 and 1850), net area transitions versus gross area transitions (shifting cultivation) and neglecting wood harvest on estimates of the net LULCC flux. Additional factorial experiments isolate the impact of uncertainty from initial conditions and transitions on the net LULCC flux. Finally, historical simulations are extended with future land-use scenarios to assess the impact of past LULCC uncertainty in future projections. Over the period 1850–2014, baseline and low LULCC scenarios produce a comparable cumulative net LULCC flux, while the high LULCC estimate initially produces a larger net LULCC flux which decreases towards the end of the period and even becomes smaller than in the baseline estimate. LULCC uncertainty leads to slightly higher sensitivity in the cumulative net LULCC flux (up to 22 %; references are the baseline simulations) compared to the starting year of a model simulation (up to 15 %). The contribution from neglecting wood harvest activities (up to 28 % cumulative net LULCC flux) is larger than that from LULCC uncertainty, and the implementation of land-cover transitions (gross or net transitions) exhibits the smallest sensitivity (up to 13 %). At the end of the historical LULCC dataset in 2014, the LULCC uncertainty retains some impact on the net LULCC flux (±0.15 PgC yr−1 at an estimate of 1.7 PgC yr−1). Of the past uncertainties in LULCC, a small impact persists in 2099, mainly due to uncertainty of harvest remaining in 2014. However, compared to the uncertainty range of the LULCC flux estimated today, the estimates in 2099 appear to be indistinguishable. These results, albeit from a single model, are important for CMIP6 as they compare the relative importance of starting year, uncertainty of LULCC, applying gross transitions and wood harvest on the net LULCC flux. For the cumulative net LULCC flux over the industrial period, the uncertainty of LULCC is as relevant as applying wood harvest and gross transitions. However, LULCC uncertainty matters less (by about a factor of 3) than the other two factors for the net LULCC flux in 2014, and historical LULCC uncertainty is negligible for estimates of future scenarios
    corecore