237 research outputs found

    Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    Get PDF
    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications

    Nonlinear optical sensors on metal nanoparticles synthesized by ion implantation

    Get PDF
    Recent results on ion synthesis and nonlinear optical properties of metal nanoparticles in various dielectrics are presented. Copper and silver nanoparticles were fabricated in silica and soda lime glasses by low energy ion implantation. The nonlinear optical characteristics of nanoparticle composite materials, which may be suited for optical sensing, were studied by applying Z-scan transmittance measurements. They were performed in the near IR area at a wavelength of 1,064 nm, using picosecond pulses of a Nd:YAG laser. Optical nonlinearities of the metal nanoparticles in various substrates such as a nonlinear refraction and a nonlinear susceptibility were detected. It was shown that the influence of the dielectric environment (optical constants) around these nanoparticles considerably changes the nonlinear optical response of the composite materials. Ultrafast optical sensors based on nonlinear effects in metal nanoparticles are discussed. © 2011 Springer Science+Business Media B.V

    Application of Ion Implantation for Synthesis of Copper Nanoparticles in a Zinc Oxide Matrix for Obtaining New Nonlinear Optical Materials

    Get PDF
    We have obtained a layered composite material by implantation of single crystal zinc oxide (ZnO) substrates with 160-keV Cu+ ions to a dose of 10(16) or 10(17) cm(-2). The composite was studied by linear optical absorption spectroscopy; the nonlinear optical characteristics were determined by means of Z-scanning at a laser radiation wavelength of 532 nm. The appearance of the optical plasmon resonance bands in the spectra indicated that ion implantation to the higher dose provides for the formation of copper nanoparticles in a subsurface layer of ZnO. The new nonlinear optical material comprising metal nanoparticles in a ZnO matrix exhibits the phenomenon of self-defocusing and possesses a high nonlinear absorption coefficient (beta = 2.07 x 10(-3) cm/W). (C) 2004 MAIK "Nauka / Interperiodica"

    Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    Full text link
    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe Ωb\Omega_b with a precision of about 4%. With Ωb\Omega_b tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.Comment: 15 pages, 11 figures, minor editorial change

    Technology of dual-creative training highly skilled workers

    Get PDF
    The article is devoted to the technology of the integrated dual-creative training of highly skilled workers electrical profile.Статья посвящена технологии комплексной дуально-творческой подготовки рабочих высокой квалификации электротехнического профиля

    Microstructure transformation in a cast Cu-Fe alloy at high pressure torsion deformation

    Get PDF
    © 2016 Advance Study Center Co. Ltd.The effect of high pressure torsion (HPT) on the microstructure of Cu-Fe 36 wt.% alloy has been studied. The initial Cu-Fe alloy has a dendritic structure, the length of dendrites is up to 100 μm. As a result of HPT (20 anvil revolutions at 400 °C) a nanostructural state is formed. The average size of the Cu and α-Fe grains is 60 and 35 nm correspondingly. The volume fraction of the Fe phase reduces from the initial 37% down to 15% after HPT. The concentration of iron dissolved in the copper lattice reaches 20%. The subsequent annealing at 700 °C for 1 hour results in some coarsening of α-Fe particles, as compared to the state after HPT. However, the typical dendritic structure of the cast alloy does not recover; it remains dispersed with the size of α-Fe particles less than 20 μm. As a result of HPT the alloy microhardness increased from 1800 to 4000 MPa. The subsequent annealing at T = 700 °C decreased the microhardness to 2700 MPa, but this value is 1.5 times higher than that in the initial as cast state

    Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability

    Get PDF
    © 2015, Springer Science+Business Media New York. The paper presents the results of a study on the microstructure and mechanical properties of a medium-carbon steel (0.45 % C) processed by severe plastic deformation (SPD) via high-pressure torsion (HPT). Martensite quenching was first applied to the material, and then HPT processing was conducted at a temperature of 350 °C. As a result, a nanocomposite type microstructure is formed: an ultrafine-grained (UFG) ferrite matrix with fine cementite particles located predominantly at the boundaries of ferrite grains. The processed steel is characterized by a high-strength state, with an ultimate tensile strength over 2500 MPa. Special attention is given to analysis of the thermal stability of the microstructure and properties of the steel after HPT processing in comparison with quenching. It is shown that the thermal stability of the UFG structure produced by HPT is visibly higher than that of quenching-induced martensite. The origin of the enhanced strength and thermal stability of the UFG steel is discussed

    ОПРЕДЕЛЕНИЕ УРАНА В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ВРЕМЯПРОЛЕТНОЙ МАСС-СПЕКТРОМЕТРИИ С ИМПУЛЬСНЫМ ТЛЕЮЩИМ РАЗРЯДОМ ПОСЛЕ ЕГО КОНЦЕНТРИРОВАНИЯ ОКИСЛЕННЫМИ УГЛЕРОДНЫМИ НАНОТРУБКАМИ

    Get PDF
    The pollution of the environment with uranium dictates the need to control the concentration of this element in natural waters to the permissible limits for the stability of the ecosystems and public health. In 2011, WHO set maximum permissible concentration of uranium in water to 0.03 ppm due to the strong toxicity and radioactivity of uranium in water. Therefore, the continuous monitoring of uranium content is an important task for the safety and health of the citizens. To determine the low uranium content in natural waters, the conservation of the studied solutions is necessary. However, this method of storage and transportation is not always simple. In the current paper, as a convenient method of concentrating uranium, preserving the sample and transporting it, we used the method of sorbing uranium on sorbents. Single-layer carbon nanotubes were used as sorbents. Their surfaces were modified using wet chemical oxidation and synthesis with Aerosil A-380 silica. Two schemes were considered for concentrating the uranium on the surface of the sorbent: individual carbon nanotubes and nanotubes modified with silica. The direct analysis was used to determine the content of uranium in the sorbent, namely, time-of-flight mass spectrometry with the pulsed glow discharge (GDMS). The most effective approach for the determination of uranium in water was the sorption of uranium on the tablet consisting of oxidized nanotubes modified with silica. The limit of detection in this case was 0.2 ppb.Keywords: mass-spectrometry, pulsed glow discharge, environment, direct analysis, uranium, carbon nanotubes  DOI: http://dx.doi.org/10.15826/analitika.2020.24.2.001Titova A.D1, Postnov V.N.1, Savinov S.S.1, Stolyarova N.V.2, Ivanenko N.B.2, Chuchina V.A.1, Gubal A.R.1, Ganeev A.A.1,21Saint-Petersburg State University (SPBU),Universitetskaya emb., 7/9, Saint-Petersburg, 199034, Russian Federation2Institute of Toxicology of Federal Medico-Biological Agency,ul. Bekhtereva, 1, Saint-Petersburg, 192019, Russian FederationЗагрязнение окружающей среды ураном диктует необходимость контроля концентрации этого элемента в природных водах до допустимых пределов, что необходимо для стабильности экосистем и здоровья населения. Из-за сильной токсичности и радиоактивности в 2011 году ВОЗ установила предельно допустимую концентрацию урана в воде – 0.03 ppm. При транспортировке проб природной воды с низким содержанием урана (на уровне ПДК) их консервируют. В качестве удобного способа транспортировки пробы и одновременного концентрирования урана в данной работе предложено сорбировать его на однослойных углеродных нанотрубках. Поверхность углеродных нанотрубок предварительно модифицировали химическим окислением и обрабатывали кремнеземом аэросил А-380. Рассматривали два варианта концентрирования урана на поверхность сорбента: индивидуальные и модифицированные кремнеземом углеродные нанотрубки. Для анализа использовали прямой метод определения содержания урана в сорбенте − времяпролетную масс-спектрометрию с импульсным тлеющим разрядом (GD-MS). Показано, что наиболее эффективным подходом для определения урана в воде стала сорбция урана на таблетку, состоящую из модифицированных кремнеземом окисленных нанотрубок. Предел обнаружения при этом составил 0.2 ppb.Ключевые слова: масс-спектрометрия, импульсный тлеющий разряд, окружающая среда, прямой анализ, уран, углеродные нанотрубкиDOI: http://dx.doi.org/10.15826/analitika.2020.24.2.00
    corecore