CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability
Authors
Ganeev A.
Ganiev M.
+5 more
Karavaeva M.
Kiseleva S.
Protasova E.
Simonova L.
Valiev R.
Publication date
1 January 2015
Publisher
Abstract
© 2015, Springer Science+Business Media New York. The paper presents the results of a study on the microstructure and mechanical properties of a medium-carbon steel (0.45 % C) processed by severe plastic deformation (SPD) via high-pressure torsion (HPT). Martensite quenching was first applied to the material, and then HPT processing was conducted at a temperature of 350 °C. As a result, a nanocomposite type microstructure is formed: an ultrafine-grained (UFG) ferrite matrix with fine cementite particles located predominantly at the boundaries of ferrite grains. The processed steel is characterized by a high-strength state, with an ultimate tensile strength over 2500 MPa. Special attention is given to analysis of the thermal stability of the microstructure and properties of the steel after HPT processing in comparison with quenching. It is shown that the thermal stability of the UFG structure produced by HPT is visibly higher than that of quenching-induced martensite. The origin of the enhanced strength and thermal stability of the UFG steel is discussed
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/136372
Last time updated on 07/05/2019