51 research outputs found

    Information Transfer in Neuronal Circuits: From Biological Neurons to Neuromorphic Electronics

    Get PDF
    The advent of neuromorphic electronics is increasingly revolutionizing the concept of computation. In the last decade, several studies have shown how materials, architectures, and neuromorphic devices can be leveraged to achieve brain-like computation with limited power consumption and high energy efficiency. Neuromorphic systems have been mainly conceived to support spiking neural networks that embed bioinspired plasticity rules such as spike time-dependent plasticity to potentially support both unsupervised and supervised learning. Despite substantial progress in the field, the information transfer capabilities of biological circuits have not yet been achieved. More importantly, demonstrations of the actual performance of neuromorphic systems in this context have never been presented. In this paper, we report similarities between biological, simulated, and artificially reconstructed microcircuits in terms of information transfer from a computational perspective. Specifically, we extensively analyzed the mutual information transfer at the synapse between mossy fibers and granule cells by measuring the relationship between pre- and post-synaptic variability. We extended this analysis to memristor synapses that embed rate-based learning rules, thus providing quantitative validation for neuromorphic hardware and demonstrating the reliability of brain-inspired applications

    Emergence of associative learning in a neuromorphic inference network

    Get PDF
    OBJECTIVE: In the theoretical framework of predictive coding and active inference, the brain can be viewed as instantiating a rich generative model of the world that predicts incoming sensory data while continuously updating its parameters via minimization of prediction errors. While this theory has been successfully applied to cognitive processes - by modelling the activity of functional neural networks at a mesoscopic scale - the validity of the approach when modelling neurons as an ensemble of inferring agents, in a biologically plausible architecture, remained to be explored. APPROACH: We modelled a simplified cerebellar circuit with individual neurons acting as Bayesian agents to simulate the classical delayed eyeblink conditioning protocol. Neurons and synapses adjusted their activity to minimize their prediction error, which was used as the network cost function. This cerebellar network was then implemented in hardware by replicating digital neuronal elements via a low-power microcontroller. MAIN RESULTS: Persistent changes of synaptic strength - that mirrored neurophysiological observations - emerged via local (neurocentric) prediction error minimization, leading to the expression of associative learning. The same paradigm was effectively emulated in low-power hardware showing remarkably efficient performance compared to conventional neuromorphic architectures. SIGNIFICANCE: These findings show that: i) an ensemble of free energy minimizing neurons - organized in a biological plausible architecture - can recapitulate functional self-organization observed in nature, such as associative plasticity, and ii) a neuromorphic network of inference units can learn unsupervised tasks without embedding predefined learning rules in the circuit, thus providing a potential avenue to a novel form of brain-inspired artificial intelligence

    Longitudinal Study of Optic Disk Perfusion and Retinal Structure in Leber's Hereditary Optic Neuropathy

    Get PDF
    Purpose: The purpose of this study was to evaluate optic disk perfusion and neural retinal structure in patients with subacute Leber's hereditary optic neuropathy (LHON) and LHON carriers, as compared with healthy controls. Methods: This study included 8 patients with LHON in the subacute stage, 10 asymptomatic carriers of a LHON-associated mitochondrial DNA mutation, and 40 controls. All subjects underwent measurement of the retinal nerve fiber layer (RNFL) thickness, the ganglion cell-inner plexiform layer (GCIPL) thickness using optical coherence tomography and optic disk microvascular perfusion (Mean Tissue [MT]) using laser speckle flowgraphy (LSFG). Patients were re-examined after a median interval of 3 months from the baseline visit. Results: LHON carriers had higher values of RNFL thickness, GCIPL thickness, and disk area than controls (P < 0.05), whereas MT was not different between the two groups (P = 0.936). Median MT and RNFL thickness were 32% and 15% higher in the early subacute stage of the disease than in controls (P < 0.001 and P = 0.001). MT declined below the values of controls during the late subacute stage (P = 0.024), whereas RNFL thickness declined later during the dynamic stage (P < 0.001). GCIPL thickness was lower in patients with LHON than in controls independently of the stage of the disease (P < 0.001). Conclusions: The high blood flow at the optic disk during the early subacute stage may be the consequence of vasodilation due to nitric oxide release as compensation to mitochondrial impairment. Optic disk perfusion as measured by LSFG is a promising biomarker for LHON diagnosis and monitoring as well as an objective outcome measure for assessing response to therapies

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    Electromechanical and robotic devices for gait and balance rehabilitation of children with neurological disability: a systematic review

    Get PDF
    In the last two decades, a growing interest has been focused on gait and balance robot-assisted rehabilitation in children with neurological disabilities. Robotic devices allow the implementation of intensive, task-specific training fostering functional recovery and neuroplasticity phenomena. However, limited attention has been paid to the protocols used in this research framework. This systematic review aims to provide an overview of the existing literature on robotic systems for the rehabilitation of gait and balance in children with neurological disabilities and their rehabilitation applications. The literature search was carried out independently and synchronously by three authors on the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, ScienceDirect, and Google Scholar. The data collected included three subsections referring to clinical, technical, and regulatory aspects. Thirty-one articles out of 81 found on the primary literature search were included in the systematic review. Most studies involved children with cerebral palsy. Only one-third of the studies were randomized controlled trials. Overall, 17 devices (nine end-effector systems and eight exoskeletons) were investigated, among which only 4 (24%) were bore the CE mark. Studies differ on rehabilitation protocols duration, intensity, and outcome measures. Future research should improve both rehabilitation protocols\u2019 and devices\u2019 descriptions

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian consensus conference on pain in neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    Psychological Treatments and Psychotherapies in the Neurorehabilitation of Pain: Evidences and Recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation

    Get PDF
    Background: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams.Objectives: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases.Methods: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions.Results: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive\u2014Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post\u2014Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache.Conclusions: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the paper

    Imagines Illustrium Virorum. La collezione dei ritratti dell'Università di Bologna

    No full text
    La quadreria dell'Università di Bologna nasce dalla donazione elargita dal cardinale Filippo Maria Monti che lasciò, per volontà testamentaria, all'istituto delle Scienze di Bologna, la sua collezione di oltre quattrocento ritratti di illustri personaggi della storia politica, religiosa, artistica dell'epoca moderna. L'iconoteca del Monti giunse a Bologna da Roma, città di adozione del cardinale, nel 1754 e venne arricchita da dipinti e ritratti donati nel tempo da nobili famiglie bolognesi o da professori dello Studio che, in tal modo, volevano ricordare i loro avi o essere ricordati nella galleria di glorie cittadina. Le donazioni più consistenti furono la collezione Alidosi e la collezione Hercolani. Attualmente la quadreria dell'Università di Bologna è costituita da oltre settecento ritratti prevalentemente eseguiti nel XVIII secolo da anonimi artisti che desunsero le effigi dei personaggi da ritrarre principalmente dai molti repertori a stampa che circolavano all'epoca. Pochi sono i ritratti del XIX secolo, rari quelli del XX secolo. Importante è anche la collezione dei ritratti dei Rettori realizzata nel XX secolo
    • …
    corecore