38 research outputs found

    Submillimetre wave 3D imaging radar for security applications

    Get PDF
    There is ongoing worldwide interest in finding solutions to enhance the security of civilians at airports, borders and high risk public areas in ways which are safe, ethical and streamlined. One promising approach is to use submillimetre wave 3D imaging radar to detect concealed threats as it offers the advantages of high volumetric resolution (~1 cm3) with practically sized antennas (<0.5 m) such that even quite small objects can be resolved through clothing. The Millimetre Wave Group at the University of St Andrews has been developing submillimetre wave 3D imaging radars for security applications since 2007. A significant goal is to achieve near real-time frame rates of at least 10 Hz, to cope with dynamic scenes, over wide fields of view at short range with high pixel counts. We review the radar systems we have developed at 340 and 220 GHz and the underpinning technologies which we have employed to realise these goals.PostprintNon peer reviewe

    Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data

    Get PDF
    Plastics in the river environment are of major concern due to their potential pathways into the ocean, their persistence in the environment, and their impacts on human and marine health. It has been documented that plastic concentrations in riparian environments are higher following major rain events, where plastic can be moved through surface runoff. Considering the hazard that plastic waste poses to the environment, monitoring techniques are needed to aid in locating, monitoring, and remediating plastic waste within these systems. Dams are known to trap sediments and pollutants, such as metals and Polychlorinated Biphenyls (PCBs). While there is an established background on the monitoring of dams using the synoptic coverage provided by satellite imaging to observe water quality and volume, the detection of marine debris in riparian systems remains challenging, especially in cloudy conditions. Herein, we exploit the use of Synthetic Aperture Radar (SAR) to understand its capabilities for monitoring marine debris. This research focuses on detecting plastic islands within the Drina River system in Bosnia and Herzegovina and Serbia. Here, the results show that the monitoring of these plastic accumulations is feasible using Sentinel-1 SAR data. A quantitative analysis of detection performance is presented using traditional and state-of-the-art change detectors. The analysis of these detectors indicates that detectors that can utilise the coherent data from Single Look Complex (SLC) acquisitions are perform better when compared with those that only utilise incoherent data from Ground Range-Detected (GRD) acquisitions, with true positive detection ratings of ~95% with 0.1% false alarm rates seen in the best-performing detector. We also found that that the cross-pol VH channel provides better detection than those based on single-pol VV polarisation

    TriHex: combining formation flying, general circular orbits and alias-free imaging, for high resolution L-band aperture synthesis

    Get PDF
    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA), together with NASA’s Soil Moisture Active Passive (SMAP) mission, is providing a wealth of information to the user community for a wide range of applications. Although both missions are still operational, they have significantly exceeded their design life time. For this reason, ESA is looking at future mission concepts, which would adequately address the requirements of the passive L-band community beyond SMOS and SMAP. This article proposes one mission concept, TriHex, which has been found capable of achieving high spatial resolution, radiometric resolution, and accuracy, approaching the user needs. This is possible by the combination of aperture synthesis, formation flying, the use of general circular orbits, and alias-free imaging.Peer ReviewedPostprint (author's final draft

    A high frame rate, 340 GHz 3D imaging radar for security

    Get PDF
    Funding: European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 312745.The need for improved security at airports with high detection performance, high throughput rates and an improved passenger experience is motivating research into new sensing technologies. The European Union funded CONSORTIS project is addressing these aims by demonstrating a system which combines a submillimeter wave radar, a dual-band passive submillimeter wave camera and automatic anomaly detection software for reliable detection while ensuring passenger privacy. In this paper we describe the 340 GHz 16-channel FMCW radar which produces 3D maps of the subject with ∌1 cm3 voxel resolution over a 1 m3 sense volume at multi-hertz frame rates. The radar combines advanced transceiver electronics with high speed mechanical beam steering and parallelized processing to achieve this level of performance.Postprin

    Investigating the Backscatter of Marine Plastic Litter Using a C- and X-Band Ground Radar, during a Measurement Campaign in Deltares

    Get PDF
    In recent years, marine plastic pollution has seen increased coverage in the public interest and research due to a greater understanding of the scale and impact of plastic pollution within the marine environment. Considering the hazard that plastic waste poses on the environment, marine life, and on humans, remote-sensing techniques could provide timely information on their detection and dynamics. The remote sensing of marine plastic is a relatively new field and research into the capabilities of radar for detecting and monitoring marine plastic pollution is generally limited, with several interactions and mechanisms being largely unknown. Here, we exploit the use of a C- and X-band radar to understand the capabilities of monitoring marine plastics. Our results show that backscattering differences in the C- and X-band between the reference water (called here as “clean”) and the test water filled with plastic can be detected in some conditions (based on statistical analysis). Overall, the results indicate that the X-band frequency performs significantly better than the C-band frequency, with X-band detecting significant differences in backscattering in 48/68 test cases compared with C-band detecting differences in 20/67 test cases. We also find that the difference in backscattering is dependent on the size and shape of the plastic object, as well as the wave conditions which the plastic is moving on. This study provides new insights on the radar capabilities for detecting marine plastic litter and new information which can be used in the planning of future missions and studies on the remote sensing of marine plastic pollution

    Monitoring Surfactants Pollution Potentially Related to Plastics in the World Gyres Using Radar Remote Sensing

    Get PDF
    Plastics within the ocean have been found to be colonised by microorganisms that, as a by-product of their metabolism, produce surfactants. Short capillary waves on the sea surface can get dampened due to the increased surface elasticity of these surfactants. Radar satellites are sensitive to surface roughness and can therefore detect the dampening of these waves. This research investigates areas inside the Atlantic, Pacific and Indian Ocean gyres using ESA Sentinel-1 and DLR TerraSAR-X data. We found out that we can observe several surfactant instances in the gyres and these are not correlated to medium or high level of chlorophyll. We can exclude that they have origin in biogenic slicks. Among other possible unknown origins, we hypothesise that these surfactants are produced from plastic concentrations within the ocean

    High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening

    Get PDF
    Funding: Part of the research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 312745.The EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) is developing a demonstrator system for next generation airport security screening which will combine passive and active submillimeter wave imaging sensors. We report on the development of the 340 GHz 3D imaging radar which achieves high volumetric resolution over a wide field of view with high dynamic range and a high frame rate. A sparse array of 16 radar transceivers is coupled with high speed mechanical beam scanning to achieve a field of view of ~ 1 x 1 x 1 m3 and a 10 Hz frame rate.Publisher PD

    The CONSORTIS 16-channel 340-GHz security imaging radar

    Get PDF
    We have completed a 16-channel 340 GHz 3D imaging radar for next-generation airport security screening under the European Union funded CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) project. The radar maps a 1 x 1 x 1 m3 sense volume with ∌1 cm3 voxel resolution at multi-hertz frame rates. The radar has been installed in the CONSORTIS system enclosure and integrated with a passenger control system and command module. The full system will ultimately also incorporate a dual-band passive submillimeter wave imager and automatic anomaly detection software for reliable, ethical detection of concealed objects. A large data collection trial on targets of interest has been conducted to support the development of automatic anomaly detection software. Initial threat detection analysis indicates promising results against aviation-relevant objects including simulant dielectric threat materials.Publisher PD

    Multi-beam pillbox antennas in the gillimeter-wave range

    No full text
    International audienc
    corecore