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Abstract— In this article, we investigate the radiation and
impedance properties of arrays of tilted dipoles. A spectral
periodic method of moments (MoM) is developed for the analysis
of infinite arrays with arbitrarily tilted dipole elements, in free
space or with a backing reflector. With the aid of this analysis
method, the radiation characteristics of arrays of stacked dipoles
over a ground plane are studied, explaining the variation of
the patterns as a function of the interelement distance and the
angle of inclination of the elements. Finite linear arrays of tilted
dipoles are also investigated, to assess the dependence of the array
characteristics on the number of elements. The developed method
can be used to design arrays with nonsymmetric radiation
patterns for angular filtering or pattern shaping.

Index Terms— Antenna arrays, Floquet analysis, method of
moments (MoM), pattern shaping.

I. INTRODUCTION

ANTENNA arrays for satellite communication applica-
tions can be required to support very large scan angles,

to be able to point to the satellites in any direction within a
nearly hemispherical field of view. However, planar antenna
arrays are typically characterized by scan loss, i.e., a reduction
of gain when the beam is pointed at angles away from broad-
side. To increase the scan range, conformal arrays [1] or multi-
panel configurations [2] have been proposed, but the height
of the structure is still too large to be installed on airplanes
without significant impact on the aircraft drag.

To obtain wide-scan capability while still maintaining a
low antenna profile, hybrid scanning methods have been
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implemented: the idea is to replace the typical planar array
configuration, with symmetric field of view, with an array
that scans the beam from broadside to a positive, as high
as possible, angle. The full coverage is then achieved by
mechanical rotation of the array along the azimuth.

An array of tilted stacked patches for digital video broadcast
terminals was presented in [3], providing a 20◦–70◦ coverage
in elevation through electronic scan and 360◦ in azimuth
through mechanical scan. The design choices were aimed
at minimizing the number of active modules and, thus, the
cost of the array. The asymmetric element pattern allowed
reducing the amplitude of the grating lobes that appear due
to an array spacing larger than half wavelength. However,
with this configuration, the grating lobe level remains only
5.8 dB lower than that of the main lobe. Further attempts
have been done to reduce the radiation toward undesired
directions, while maintaining a large element spacing, e.g.,
in [4], by resorting to an overlapped beam-forming network.
However, the improvement in terms of pattern selectivity is
achieved at the cost of a more complex feeding architecture.

Although the mentioned works employed skewed antenna
elements, the behavior of this type of arrays in terms of
radiation characteristics has not been investigated in detail. The
symmetry properties of arrays of antennas with asymmetric
current distribution were studied in [5], based on a Floquet
analysis. However, this analysis was only addressing the cases
of planar antenna elements in infinite array environment. Here,
we aim to extend the analysis to elements that can have
vertical components in the current distribution, focusing also
on interelement spacing exceeding half wavelength, and to
study the asymmetric radiation properties of finite arrays.

For this purpose, we derive a periodic spectral method of
moments (MoM) capable of modeling skewed dipoles. Ana-
lytical expressions are derived for the active input impedance
of tilted dipoles, by assuming a single sinusoidal basis func-
tion to describe the current distribution. The active element
patterns (AEPs) are also evaluated in closed form and a
parametric analysis is then performed to show how the radi-
ation patterns vary with the interelement distance and the
inclination angle of the dipoles. The study provides useful
design guidelines for tilted element arrays to achieve desired
radiation characteristics.

Existing solutions for pattern shaping include amplitude
and phase weighting of the elements [7]–[9] and density
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Fig. 1. Unit cell of an infinite array of tilted dipoles in free space with the
original and rotated reference systems. (a) 3-D view. (b) Side view.

taper [10], [11]. Unlike these techniques, which require com-
plex beam forming structures to independently control the
amplitude and phase of each element, the method presented
here only requires a linear progressive phase shift for scanning
with no amplitude taper. Moreover, the synthesis procedure
is very simple, mainly based on only two parameters: the
interelement distance and the tilt angle of the elements.
Element-level pattern diversity has also been used in [12]
to combine different modes in the radiating elements as
an additional degree of freedom. Similarly, here we exploit
different Floquet modes within the array unit cell to achieve
asymmetric patterns.

II. PERIODIC MOM FOR AN ARRAY OF SKEWED

DIPOLES IN FREE SPACE

To investigate the radiation properties of arrays of tilted
elements, a periodic MoM solution is derived. For the sake of
simplicity, we first consider an array of tilted strip dipoles in
free space, as shown in Fig. 1. The dipoles are assumed to
be tilted by an angle α with respect to the x-axis and excited
with a delta gap source.

By applying the equivalence principle, unknown equivalent
current densities radiating in free space can be defined on the
dipole surface. The total current density for the infinite array
can be written as a sum of doubly periodic contributions

j∞(x, y, z) =
∞�

nx =−∞

∞�
ny=−∞

j(x − nxdx , y − nydy, z)

·e− j kx0nx dx e− j ky0ny dy (1)

where kx0 = k0 sin θ cos φ and ky0 = k0 sin θ sin φ are the
x- and y-components of the wave vector associated with the
scanning directions θ and φ, respectively, and k0 is the free-
space wavenumber at the calculation frequency.

The currents must satisfy the boundary conditions,
that is, the tangential electric field vanishes on the metal
(ẑR × etot = 0), which is assumed to be perfect electric con-
ductor (PEC). In the feeding gaps, the field is related to the
current by the impedance boundary conditions (ẑR × etot =
Zl j ), where Zl is an equivalent surface impedance related to
the generator impedance of the feeds. Defining the function
rectgap(r) to be 1 in the gap regions and zero elsewhere, we can
write the electric field integral equation as

−escat(r) + Zl j(r)rectgap(r) = einc(r) (2)

where we introduced the incident electric field einc =
(V0/δ)rectgap(r). The scattered field can be written in the
space domain as a convolution integral

escat(r) =
���

V

j∞(r �)g(r, r�)d r � (3)

where g is the free-space dyadic Green’s function, relating
the electric field to the electric source, V is an infinite volume
containing the entire dipole array, and r ≡ (x, y, z) and r � ≡
(x �, y �, z�) are the observation and source points, respectively.

The scattered field can also be evaluated in the spectral
domain, in terms of a double-Floquet modal expansion in x
and y and an inverse Fourier integral for the z-variable

escat(r)= 1

2π

1

dxdy

� ∞

−∞

∞�
mx =−∞

∞�
my=−∞

J(kxm, kym, kz)

G(kxm, kym, kz)e
− j kxm x e− j kym ye− j kzzdkz (4)

where J is the 3-D Fourier transform of the current distri-
bution in the unit cell with indexes nx = 0 and ny = 0,
and G is the spectral dyadic Green’s function, given in (34).
The Floquet wavenumbers are kxm = kx0 − 2πmx/dx and
kym = ky0 − 2πmy/dy , and kz is the spectral counterpart of
the spatial variable z.

The current density distribution on the dipole centered in the
origin is assumed as a single entire-domain basis function:

j (xR, yR, zR)x̂ R = i0bl(xR)e(yR)δ(zR)x̂ R (5)

where we applied the separation of variables and we consid-
ered the rotated (xR yRzR)-reference system, defined in Fig. 1.
The coefficient i0 is an unknown weight for the current distri-
bution and x̂ R is the unit vector aligned with the dipole axis.
The chosen basis function comprises a longitudinal piecewise
sinusoidal distribution [14]–[16]

bl(xR) = sin(k0(l/2 − |xR|))
sin(k0l/2)

(6)

where l indicates the dipole length, an edge-singular transverse
profile [13]

e(yR) = 2

πw

�
1 − 2yR

w

�−1/2

(7)

where w is the dipole width and a Dirac delta function δ(zR),
since the dipole thickness is assumed to be infinitesimal.

By applying the axis transformation

xR = x cos α−z sin α, zR = x sin α+z cos α (8)

the current distribution can be expressed in the (xyz)-reference
system (see Fig. 1) as

j (x, y, z) = i0bl(x cos α−z sin α)e(y)δ(x sin α+z cos α) . (9)

As shown in Appendix A, the 3-D Fourier transform of the
current can be derived as

J (kx , ky, kz) = i0 J0(kyw/2)Bl(kx cos α − kz sin α) (10)
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where J0 is the Bessel function of the zeroth order, represent-
ing the Fourier transform of the edge singular distribution, and
Bl is the Fourier transform of the sinusoidal profile given by

Bl(k) = 2k0(cos(kl/2) − cos(k0l/2))�
k2

0 − k2
�

sin(k0l/2)
. (11)

By applying the Galerkin method [17], we can define
the active input impedance of the dipole as the projection
(indicated as �·, ·�) of the field scattered by the basis function
onto a test function, t , chosen as equal to the basis function

Z in = −�ẑR × escat(r), t(r)�
i0

. (12)

By substituting (4) in (12), after some algebraic steps,
the input impedance can be expressed in the spectral domain,
for dipoles in free space, as follows:

Z in,fs = −1

2πdxdy

∞�
mx =−∞

∞�
my=−∞

J 2
0

�
kymw

2

�

∞�
−∞

Bl(kxR )Bl(−kxR )GxR xR (kxm, kym, kz)dkz (13)

where kxR = kxm cos α − kz sin α and GxR xR is related to
xx-, xz-, and zz-components of the free-space dyadic Green’s
function by

GxR xR = Gx x cos2α − 2Gxz sin α cos α + Gzz sin2α . (14)

With the chosen sinusoidal basis function to represent the
current on the dipole, the integrand in (13) can be written
explicitly in closed form. The resulting expression presents a
number of polar singularities, thus the integral can be solved
analytically using the residue theorem, following the steps
described in Appendix B.

For small electrical dimensions of the delta gap,
the unknown coefficient i0 can be found as i0 = V0/(Zl +Z in).
Once the current i0 is found, we can calculate the radiation
pattern, by evaluating the expression in (4) only in the funda-
mental Floquet mode and calculating the integral in kz with
the residue theorem in the pole kzm = (k2

0 − k2
xm − k2

ym)1/2

e(r) = jkz0

dxdy

e− j k0r

2πr
J(kx0, ky0, kz0)G2D(kx0, ky0) (15)

where G2D(kx , ky) is the 2-D spectral dyadic Green’s function
in free space.

As a numerical example, we consider an array of dipoles
of length l = 0.5λ, width w = 0.1λ, rotated by α = 30◦.
The port impedance is set to Zl = 50 �. The active input
impedance and the AEP in the E-plane, calculated with the
proposed method, are shown in Fig. 2 and compared with
HFSS simulations, as a function of the scan angle. Two
different periods are considered, dx = dy = 0.5λ and dx =
dy = 0.6λ. The discrepancy between the MoM and HFSS in
terms of impedance is mainly due to the single basis function
approximation we made for the current, which neglects the
reactive energy stored in the feeding gap. However, the approx-
imation is sufficient to properly represent the radiation patterns
[Fig. 2(b) and (d)].

Fig. 2. Active input impedance for an infinite array of dipoles in free space
with a spacing between elements of (a) 0.5λ and (c) 0.6λ. E-plane AEP for
(b) 0.5λ and (d) 0.6λ. The dipoles are tilted 30◦ and the results of the MoM
are compared with HFSS.

Fig. 3. Unit cell of an infinite array of tilted dipoles with a backing reflector.
(a) 3-D view and (b) side view after applying the image theorem.

From the results shown in Fig. 2, it can be noted that
the impedance is symmetric with respect to the scan angle,
regardless of the periodicity. This result is consistent with the
symmetry properties demonstrated in [5] for planar currents.
A proof of the symmetry condition from the explicit expres-
sions of the impedance is given in Appendix C, where we
consider currents that can have vertical components. Despite
the symmetry of the impedance, the AEPs are not symmetric
with respect to the broadside direction, even for periods of
0.5λ. Therefore, tilted dipole elements in free space do not
satisfy the pattern symmetry condition stated in [5]. For
periodicity higher than half wavelength, discontinuities occur
in the active input impedance and the AEP, due to grating
lobes entering the visible region [18].

III. DIPOLES WITH A BACKING REFLECTOR AND

STACKED DIPOLE ELEMENTS

A. Array of Dipoles With a Backing Reflector

We now consider tilted dipoles with their center at a
distance h from a backing reflector, as depicted in Fig. 3(a).
By applying the image theorem as in Fig. 3(b), the active
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Fig. 4. Active input impedance for an infinite array of dipoles with a backing
reflector, for (a) 0.5λ and (c) 0.6λ spacing. E-plane AEP for (b) 0.5λ and
(d) 0.6λ. The dipoles are tilted 30◦ and the results of the MoM are compared
with HFSS.

input impedance of the dipole can be written as the summation
of the self-impedance and the mutual impedance with its
image: Z in = Zself + Zmutual, where Zself coincides with Z in,fs
in (13), whereas Zmutual can be calculated in a similar way by
including a shift 2h along the z-axis and an inverse tilt of the
image compared to the main dipole

Zmutual

= −1

2πdxdy

∞�
mx =−∞

∞�
my=−∞

J 2
0

�
kymw

2

�

∞�
−∞

Bl(kxRi)Bl(−kxR)GxR xRi(kxm, kym, kz)e
− j kz2hdkz (16)

where kxRi = kxm cos α + kz sin α represents a wavenum-
ber with inverse rotation compared to kxR and GxR xRi =
−Gx x cos2 α+Gzz sin2 α. The radiated field is the summation
of the field radiated by the dipole and by its image

e(r) = jkz0

dxdy

e− j k0r

2πr

�
J(kx0, ky0, kz0)

±J image(kx0, ky0, kz0)
�

G(kx0, ky0)

(17)

where the “+” sign refers to the z-component of the currents
and the “−” sign refers to the x-component of the currents,
as a consequence of the image theorem. The image current
spectrum J image is given by

J image(kx , ky, kz) = i0 J0(kyw/2)Bl(kx cos α + kz sin α)

· e− j kz2h x̂ Ri . (18)

As numerical example, we consider the same dipole geom-
etry as in Section II and we set h = 0.25λ. The active
input impedance and the AEP for an interelement distance
of 0.5λ and 0.6λ are plotted in Fig. 4, compared with HFSS.

Fig. 5. Unit cell of an infinite array of tilted dipoles with a backing reflector.
(a) 3-D view and (b) side view after applying the image theorem.

We can observe that the impedance is symmetric with respect
to the scan angles, as for the free-space case. Regardless of
the interelement distance, the AEP of an array of dipoles in
the presence of a backing reflector is also symmetric with
respect to broadside. This property can be explained with the
fact that, as the dipole radiates the same power upward and
downward, the power reflected by the ground plane is equal
to the one radiated upward but in the specular direction. This
result suggests using a more directive element to reduce the
power reflected by the ground plane in the specular direction
and to achieve asymmetry in the radiation.

B. Array of Stacked Dipoles With a Backing Reflector

In this section, we study stacked dipoles in the presence
of a backing reflector, as depicted in Fig. 5(a). The unit cell
consists of an active dipole with a parasitic strip to increase
its directivity. The current distribution of the parasitic dipole,
with length l p , is given by

Jp(kx , ky, kz) = i p J0(kyw/2)Blp (kx cos α − kz sin α) ·
e jkx dz sin αe jkzdz cos α (19)

where i p is an unknown amplitude. To simplify the notation,
we number the basis functions with the indexes 1, 2 for the real
dipoles and 1i , 2i for their image, as shown in Fig. 5(b). The
unknown weights for the currents on the active and passive
dipoles (i0 and i p, respectively) can be found as�

i0
i p

	
=

��
Zl 0
0 0

	
+

�
Z1,1+Z1,1i Z1,2+Z1,2i

Z2,1+Z2,1i Z2,2+Z2,2i

	�−1

·
�

V0
0

	
(20)

where the self-impedance and mutual impedance terms can
be expressed very similar to (13) and (16), by selecting the
correspondent tilt and location of the basis functions. As an
example, the geometrical parameters of the stacked dipole
are set to l = 0.5λ, l p = 0.42λ, dz = 0.07λ, w = 0.12λ,
and δ = 0.1λ, where λ is the wavelength at the calculation
frequency. These dimensions are selected to increase the
directivity, compared to a single dipole.

Fig. 6 shows the input impedance and the AEP for scanning
in the E-plane, for the stacked dipole element tilted by
α = 30◦, at distance h = 0.25λ from the ground plane,
and for interelement distance of 0.5λ and 0.6λ. The input
impedance for both interelement distances is again symmet-
ric, as expected. A larger discrepancy between the method
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Fig. 6. Active input impedance for an infinite array of stacked dipoles with a
backing reflector, for (a) 0.5λ and (c) 0.6λ spacing. E-plane AEP for (b) 0.5λ
and (d) 0.6λ. The dipoles are tilted 30◦ and the results of the MoM are
compared with HFSS.

described in this article and HFSS can be observed in the
input reactance and in the pattern for dx = 0.5λ, mainly due
to the fact that the dipoles in the unit cells are very close to
each other and therefore, an entire-domain sinusoidal profile
is not accurate enough to represent the current distribution of
both dipoles and the coupling between neighboring elements.
Nevertheless, the radiation patterns calculated with our method
still show a fair agreement with HFSS.

As it can be seen in Fig. 6, the radiated pattern is
symmetric for 0.5λ period, whereas it is nonsymmetric for
larger interelement distances. Thus, by comparing the results
in Figs. 6(d) and 4(d), it can be noted that the increased
directivity is a key property to realize nonsymmetric patterns.
The steep gain drop that can be observed in Fig. 6(d) at around
θdrop = −42◦ corresponds to the angle at which a grating lobe
enters in the visible region, that is,

θdrop = sin−1(1 − λ/dx) . (21)

The asymmetry can be further highlighted by analyzing the
different contributions to the pattern from the active and para-
sitic dipoles. Fig. 7(a) and (c) report the separate contributions
to the radiated field from the active and the passive dipoles,
for array period of 0.5λ and 0.6λ, respectively. The radiated
field of the stacked dipole is etotal(r) = ed(r)+ ep(r), where
ed(r) is the field radiated by the active dipole and its image,
calculated as in (17), while ep(r) is the field radiated by the
passive dipole and its image.

Both fields are normalized to the maximum of the total
pattern, also shown in the figure. It can be observed that
the amplitudes of the individual contributions are higher
than their sum, which implies a partial cancellation of the
radiated fields from two elements. This is also confirmed
in Fig. 7(b) and (d), where the phase difference between the
two radiated electric fields from active and parasitic dipoles
is between 160◦ and 230◦. Such values are also typical of

Fig. 7. AEP of array of tilted stacked dipoles with a backing reflector tilted
by α = 30◦, with separate contribution from active dipoles and parasitic
ones. (a) dx = dy = 0.5λ and (c) dx = dy = 0.6λ. Phase difference
between fields radiated by active and passive dipoles. (b) dx = dy = 0.5λ
and (d) dx = dy = 0.6λ.

superdirective arrays [19], [20], where higher directivity is
obtained with arrays of closely spaced elements, that have
very large and oppositely directed currents. It is important
to remark that such configurations can lead to high Ohmic
losses in realistic designs, due to the high current intensity.
Nevertheless, efficiency aspects are not addressed in this
article, as we only assume PEC as metal.

From Fig. 7(a), it appears that, although the pattern due to
the passive dipoles is nonsymmetric, when summing the fields
radiated by the active and passive dipoles, perfect symmetry
is restored in the total pattern. This can be interpreted by
noting that, since the period is 0.5λ, only a single radiating
Floquet mode is supported by the structure. The aperture field
due to this mode tends to be uniform in amplitude in the
unit cell, providing a wide and symmetric radiation pattern.
For a period of 0.6λ in Fig. 7(c), a high-order Floquet wave
enters the visible region, thus the field distribution on the
unit cell aperture supports an additional mode associated with
radiation toward a different direction. Under this condition,
the currents on the active and passive dipoles can produce
cancellations that suppress the gain in certain angular regions.
Indeed, the phase difference between the field radiated by the
active and passive dipoles in Fig. 7(d) is close to 180◦ for
angles between −90◦ and −45◦.

C. Parametric Analysis

A parametric analysis on the radiation pattern of the tilted
stacked dipole array is carried out to determine the para-
meters that affect the power radiated in specific directions.
The considered geometrical variables are the interelement
spacing (dx , dy) and the inclination angle of the dipoles (α).
Fig. 8(a) and (b) shows the AEPs when varying the interele-
ment distance and the tilt angle, respectively. All patterns
are normalized to the broadside value for the maximum unit
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Fig. 8. AEP for an infinite array of stacked dipoles (a) tilted 30◦ for different
spacings dx , dy and (b) with an interelement distance of 0.6λ for different
tilt angles α.

Fig. 9. Grating lobe diagram for a stacked dipole array with interelement
distance of 0.6λ, tilted by α = 30◦. The grating lobe circles correspondent to
the Floquet modes (mx , m y ) equal to (−1, 0), (0, 0), and (0, 1) are represented
and the AEP is mapped in the visible region.

cell size, i.e., dx = dy = 0.65λ. Due to the relation in (21),
the array period can be used in a design phase as a parameter
to select the angle at which the pattern drop-off occurs,
as shown in Fig. 8(a). When increasing the array unit cell
dimensions, the AEP becomes more and more directive, with
a redistribution of radiated power from the low-gain regions
(θ < −θdrop) to the rest of the field of view. From Fig. 8(b),
it is apparent that the tilt angle is a convenient parameter to
shape the gain levels in the suppressed angular region. As a
result, the combination of the two parameters (dx and α) can
be conveniently used to effectively realize angular filtering by
mean of array of stacked dipoles or patches. For comparison,
Fig. 8(b) also shows the AEP when the elements are not tilted,
to highlight how the tilt does not change the overall radiated
power, but allows to redistribute it in the field of view by
increasing the gain for positive scan angles while reducing it
for negative scan angles.

D. Grating Lobe and Polarization Analysis

Since the asymmetry of the radiation pattern is achieved
only for interelement distances higher than half wavelength,
a grating lobe analysis is reported in this section. For example,
Fig. 9 shows the grating lobe diagram for the array of tilted
stacked dipoles, when the period is 0.6λ. We also plot a color
map of the AEP as a function of the scan directions (kx0, ky0)
in the circle with radius k0 centered in the origin, representing
the visible region. It is evident that, as the circles associated
with the Floquet modes overlap, grating lobes can enter the
visible region when scanning. For example, when the array
scans to θscan = 50◦, the Floquet mode (mx , my) equal to
(−1, 0) is within the visible region. However, this higher order
Floquet wave corresponds to a direction for which the AEP
is lower than −12 dB. To clarify this aspect, a pattern cut

Fig. 10. AEP of an array of stacked dipoles with interelement distance 0.6λ
and array pattern calculated by windowing technique for 10 elements, when
scanning to 50◦. Elements are tilted by α = 30◦.

Fig. 11. Cross-polarized u–v pattern of an infinite array of stacked dipoles
spaced 0.6λ0 for (a) α = 0◦ and (b) α = 30◦. Yellow circles: scanning angle
of 60◦ .

for φ = 0◦ is shown in Fig. 10, including the AEP as well
as the array pattern for 10 × 10 elements, calculated with
a windowing technique [21], [22]. A grating lobe points at
−65◦ but it is weighted by the element pattern, thus it remains
−12 dB below the maximum. As a consequence, the gain of
the main beam does not sensibly decrease with respect to the
ideal cos θ profile.

Fig. 11 shows u–v cross-polarized patterns of the unit cell
shown in Fig. 5, for element tilt of α = 0◦ and α = 30◦. In
the E-plane, the cross-pol is not affected by the tilt, since both
the x- and the z- components of the current radiate copolar
fields. However, in the H-plane or in diagonal planes, the X-
pol increases due to the tilting. Within a scan range up to
θ = 60◦ (indicated with a yellow inner circle in the plot),
the worst X-pol is −6 dB for the tilted element, while it is
−10 dB for the nontilted one.

IV. FINITE LINEAR ARRAY ANALYSIS

To investigate the radiation properties of arrays comprising
a finite number of elements, a spectral MoM for finite linear
array of tilted stacked dipoles is also derived, to provide a
simulation tool much faster than commercial solvers and to
enable simulations of very large arrays. The method ana-
lyzes arrays of dipoles with arbitrarily tilt in the presence
of a backing reflector. For efficient analysis of large arrays,
we again consider only a single sinusoidal basis function for
the longitudinal current on each dipole.

The geometry under analysis is depicted in Fig. 12, which
shows the original array with the backing reflector and the
equivalent problem obtained by applying the image theorem.
The array consists in Nx stacked dipole elements in the pres-
ence of the ground plane, thus leading to 4Nx basis functions
for the active and passive dipoles and their images. The mutual
impedances are computed in different ways, depending on the
pair of basis and test functions to be evaluated.
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Fig. 12. Linear array of skewed stacked dipoles (a) above an infinite ground
plane and (b) application of image theorem.

A. Mutual Impedance Computation

Let us consider any pair of parallel dipoles, for exam-
ple, oriented along x̂ R , with indexes n and n�, centered in
the points (xRn, 0, zRn) and (xRn� , 0, zRn�), respectively. The
mutual impedance can be written as a double spectral integral

Znn� = − 1

2π

� ∞

−∞
Bln� (kxR )Bln (−kxR ) ·

Dnn� (kxR )e− j kxR (xRn−xRn� )dkxR (22)

where ln and ln� are the length of the nth and n�th dipoles,
respectively, and the function Dnn� is given by

Dnn� (kxR ) = 1

2π

� ∞

−∞
J0(kyw/2)G2D,xR xR (kxR , ky)

· e
− j



k0−k2

xR
−k2

y |zRn−zRn� |
dky . (23)

The expressions in (22) and (23) are obtained by considering
Galerkin projection for the xR-oriented distribution, while
assuming point matching for the y- and zR-variables. This
choice is made so that, when computing the self-impedance,
for which zRn = zRn� , the integral in (23) can be solved
rigorously in closed form as done in [13], thus only a
single spectral integral in the variable kxR remains to be
evaluated. When the distance between dipoles is much larger
than the dipole width (|zRn − zRn� | � w), (23) can also
be approximately solved analytically, as shown in [23]. For
distances |zRn−zRn� | in the order of w, we solve numerically
the double integral, by pretabulating the function Dnn� for a
set of kxR points and using a cubic interpolation to fit the
function through these points. Alternatively, one can use the
closed form expressions for the self-impedance and mutual
impedance from [19] and [26], which assume infinitely thin
dipoles. These expressions are accurate for sufficiently large
distance between dipoles and for very small dipole width.
However, when the dipole width and the distances are in the
order of λ/10, the expressions in (22) and (23) provide better
accuracy, since they account for the transverse distribution of
the current on the strips.

Fig. 13. Pattern envelope as a function of the number of elements for a linear
array of stacked dipoles in the presence of a backing reflector. The inclination
angle is α = 30◦ and the distance between elements is (a) dx = 0.5λ and
(b) dx = 0.6λ.

The mutual impedance between dipoles that are not parallel
(any real dipole with any image) is calculated analytically
using the method described in [27], which is valid for skewed
dipoles with arbitrary length and distance. Moreover, for equal
tilt of all the elements, the MoM matrix is block Toeplitz, thus
a reduced set of the impedance terms needs to be calculated.

B. Radiation Properties

Based on the described efficient MoM, a parametric analysis
on the radiation pattern of the finite array is carried out,
varying the interelement distance dx , the angle of inclination α,
and the number of elements Nx . The geometrical dimensions
for the stacked dipole element are the same as in Section III-B.

Fig. 13 reports the normalized envelop of the array radiation
pattern as a function of the scan angle, for two different
array periods and for various array sizes. The envelope of a
5-element linear array simulated with HFSS is also included to
verify the MoM solution. It is apparent that, when the distance
between elements is half wavelength [Fig. 13(a)], a small
pattern asymmetry is obtained for small arrays, but such
asymmetry tends to disappear when increasing the number
of elements. This observation is in line with infinite array
results. The curves shown in Fig. 13(b) exhibit a very different
behavior for array periods larger than λ/2, for which the
asymmetry remains nearly constant and independent on the
number of elements. We can also note that, since the array
is 1-D and located on an infinite ground plane, the gain for
positive scan angles does not follow the cos θ typical of doubly
periodic array, thus it does not drop to 0 even for scanning
close to 90◦. This behavior is typical of linear arrays, where
a proper phase shift between the elements can still produce
high gain in the endfire direction [19].

Fig. 14 shows the normalized E-plane pattern for an array
of 25 elements with different periods and inclination angles of
α = 30◦. As for the infinite array case, the angular position of
the gain drop can be controlled with the array period. However,
unlike the infinite array, even for dx = 0.5λ, a 25-element
linear array can achieve a certain degree of asymmetry. The tilt
angle influences both the gain levels in low-radiation angular
region and for wide positive angles [Fig. 14(b)].

Fig. 8(a) or Fig. 14(a) also illustrates the frequency depen-
dence of the proposed concept. For a given array spacing,
changing the frequency causes a shift of the angle at which
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Fig. 14. Pattern envelope of a linear array of 25 stacked dipoles (a) tilted
30◦ for different spacings dx and (b) with an interelement distance of 0.6λ
for different tilt angles α.

Fig. 15. Definition of desired and undesired angular ranges, bounded by the
direction θbound.

the gain drops. To quantify the effect of this shift on the
performance and to provide guidelines for array designs,
we define in Section IV-C a figure of merit to assess the
asymmetry.

C. Design Guidelines

We can imagine to divide the field of view in two angular
regions, as in Fig. 15: the ‘desired range’ refers to the angles
for which a high and stable gain is wished for, whereas the
‘undesired range’ is where suppression of gain is intended.
These two regions are limited by the angle θbound. To quantify
the asymmetry of the pattern, we define a figure of merit (A)
that we refer to as an asymmetry factor

A(θbound) = 1 − P(−90◦ < θ < θbound)

P(θbound < θ < 90◦)
90◦ − θbound

θbound + 90◦ (24)

where P(θ1 < θ < θ2) is the power contained between the
angles θ1 and θ2. The term (90◦ − θbound)/(θbound + 90◦)
has been included in (24) to compensate for the difference
in power ratio while varying θbound. To clarify this aspect,
let us consider an ideal radiation pattern, equal to 1 in
the desired range and 0.1 in the undesired range. If we
calculate the figure of merit A removing the ratio (90◦ −
θbound)/(θbound + 90◦), the resulting values will depend on
θbound: e.g., A(−80◦) = 1 − (0.1 × 10◦)/(1 × 170◦) = 0.994,
A(−45◦) = 1 − (0.1 × 45◦)/(1 × 135◦) = 0.967, A(0◦) =
1−(0.1×90◦)/(1×90◦) = 0.9. On the other hand, adding the
term (90◦ − θbound)/(θbound + 90◦) gives the same asymmetry
factor in all cases (A(−80◦) = A(−45◦) = A(0◦) = 0.9),
which depends only on the values of the radiation pattern in
the desired and undesired regions.

Fig. 16. Asymmetry of the radiation pattern (in decibels) varying the
inclination angle and interelement distance for θbound equal to (a) −10◦,
(b) −20◦, (c) −30◦, and (d) −40◦.

Fig. 17. (a) Maximum value of the asymmetry factor when varying θbound
and (b) normalized array pattern envelopes for θbound = −45◦ and θbound =
−10◦.

Fig. 16 shows a map of the asymmetry (normalized to the
maximum) for different θbound (−10◦, −20◦, −30◦ and −40◦)
while varying the interelement distance and the inclination
angle. An array of 25 elements is considered. Depending
on the specified θbound, the optimal configuration to achieve
maximum asymmetry occurs for different dx and α.

Fig. 17(a) shows the maximum of the asymmetry while
varying θbound. The decreasing values can be explained by
observing the array pattern envelopes for θbound = −45◦
and θbound = −10◦, in Fig. 17(b). The side lobes in the
undesired region are higher for larger periods, which explain
the decrease in the asymmetry factor. The values of inclination
angle and interelement spacing correspondent to the maxima
of the asymmetry factor are plotted versus θbound in Fig. 18.
The value of dx that yields the maximum increases with θbound
and also corresponds to the value that gives θdrop = θbound
calculated from (21). The tilt angle that gives maximum
asymmetry is also changing with θbound. An interpretation of
this behavior can be related to the mutual blockage effects
between array elements that limits the maximum tilt angle for
small periods, as depicted in the inset of Fig. 18.
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Fig. 18. Interelement distance and inclination angle corresponding to
maximum asymmetry for different θbound.

V. CONCLUSION

We presented an analysis of infinite and finite arrays with
tilted elements, with particular focus on their radiation charac-
teristics. A periodic MoM was developed to analyze different
dipole geometries through analytical expressions. It was shown
that skewed stacked dipole elements can be used to achieve
nonsymmetric radiation when used in combination with a
backing reflector, for interelement spacings larger than half
wavelength. The dependence of the AEP on the inclination of
the elements and the array period was discussed. These two
parameters can be varied to control the pattern profile, thus the
proposed elements can be effectively employed to implement
pattern shaping.

Finite linear arrays of stacked dipoles were also investi-
gated. The analysis was based on an efficient MoM approach,
based on entire domain basis functions, where several mutual
coupling terms were analytically computed. The finite array
analysis allowed to highlight the dependence of the pattern
asymmetry on the number of elements, besides the spacing
and tilt angle.

APPENDIX A
FOURIER TRANSFORM OF THE CURRENT DISTRIBUTION

The 3-D Fourier transform of the current in (9) can be
written as

J (kx , ky, kz)

=
��

V

�
j (x, y, z)e jkx xe jky ye jkzzdxdydz

= i0

��
V

�
bl(x cos α − z sin α)e(y)δ(x sin α + z cos α) ·

e jkx x e jky ye jkz zdxdydz (25)

where V is a volume containing the entire dipole. The integral
along y yields the Bessel function of the zeroth order. There-
fore, the Fourier transform is expressed as a double integral

along x and y

J (kx, ky, kz) = i0 J0

�
kyw

2

� �
A

�
bl(x cos α − z sin α) ·

δ(x sin α + z cos α)e jkx x e jkzzdxdz (26)

where A is the surface of the dipole. We can apply the change
of variables

x � = x cos α−z sin α, z� = x sin α+z cos α (27)

where the Jacobian of the transformation equals unity

det

����dx �/dx dx �/dz
dz�/dx dz�/dz

���� = det

����cos α − sin α
sin α cos α

���� = 1 . (28)

The expression in (26) becomes

J (kx , ky, kz) = i0 J0

�
kymw

2

� �
A

�
bl(x �)δ(z�) ·

e j (kx cos α−kz sin α)x �
e j (kx sin α+kz cos α)z�

dx �dz� .
(29)

Closing the integral in x � and z� we can find the final
expression for the spectral current

J (kx , ky, kz) = i0 J0

�
kymw

2

�
Bl(kx cos α − kz sin α) . (30)

APPENDIX B
CLOSED-FORM SOLUTION OF THE

ACTIVE INPUT IMPEDANCE

The active input impedance in (13) contains a spectral
integral in the kz-variable

I =
∞�

−∞
B2

l (kxR )GxR xR (kxm, kym, kz)dkz. (31)

The argument of the integral comprises a product between
the spectral-domain piecewise sinusoidal distributions defined
in (11). When writing explicitly this product, we obtain, after
a few algebraic steps

B2
l (kxR ) =

�
2k0

sin(k0l/2)

�2 A1 + A2(kxm, kz) + A3(kxm, kz)�
k2

0 − k2
xR

�2

(32)

where

A1 = 1

2
+ cos2(k0l/2)

A2(kxm, kz) = e jkxR l

4
− cos(k0l/2)e jkxR l/2

A3(kxm, kz) = e− j kxR l

4
− cos(k0l/2)e− j kxR l/2 . (33)
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The components of the free-space dyadic spectral Green’s
function used in (31) can be expressed as

Gej
x x(kx , ky, kz) = j

ζ

k0

k2
0 − k2

x

k2
0 − k2

x − k2
y − k2

z

Gej
xz(kx , ky, kz) = j

ζ

k0

−kxkz

k2
0 − k2

x − k2
y − k2

z

Gej
zz(kx , ky, kz) = j

ζ

k0

k2
0 − k2

z

k2
0 − k2

x − k2
y − k2

z
. (34)

Substituting all the components in the definition GxR xR =
Gx x cos2α − 2 Gxz sin α cos α + Gzz sin2α leads to

GxR xR (kxm, kym, kz)= j
ζ0

k0

k2
0 −(kxm cos α−kz sin α)2

k2
0 − k2

xm − k2
ym − k2

z
. (35)

By combining (32) and (35), we can write the integral as

I = j
ζ0

k0

�
2k0

sin(k0l/2)

�2 ∞�
−∞

1

k2
0 − k2

xm − k2
ym − k2

z
·

A1 + A2(kxm, kz) + A3(kxm, kz)

k2
0 − (kxm cos α − kz sin α)2

dkz .(36)

The integrand in (36) contains four poles

kzp1 = kxm cot α + k0 csc α

kzp2 = kxm cot α − k0 csc α

kzp3 = −



k2
0 − k2

xm − k2
ym

kzp4 =



k2
0 − k2

xm − k2
ym . (37)

The location of these poles in the complex plane can change
depending on the Floquet mode indexes, the scan angles,
and the tilt of the dipoles. For instance, when considering
the fundamental Floquet mode (mx = my = 0) and scan-
ning to broadside with a tilt of α = 30◦, the poles are
located on the real axis as shown in Fig. 19(a). For the
mode mx = −1, my = 0, the poles move in the configuration
depicted in Fig. 19(b).

The integral in (36) can then be written in terms of the polar
singularities as

I = j
ζ0

k0

�
2k0

sin(k0l/2)

�2

·
∞�

−∞
(A1+ A2(kxm, kz)+ A3(kxm, kz))

4�
i=1

1

kz − kzpi
dkz .

(38)

By using the Cauchy theorem, the residue theorem can
be applied. To ensure convergence, the integral can be split
in three contributions: the path can be deformed at infinity
as in Fig. 19(c) for the terms A1 and A2, whereas the
deformation shown in Fig. 19(d) is considered for A3. For
each of the three contributions, the result of the integral can be
obtained as the sum of the residues correspondent to the polar
singularities that are enclosed in the pertaining deformation

Fig. 19. Locations of the poles scanning at broadside with a tilt of α = 30◦
considering (a) fundamental Floquet mode and (b) e mx = −1, m y = 0. The
deformation paths used depending on the convergence of the contributions.
(c) Upward. (d) Downward.

path, where the sign of the residues change if the path is
clockwise or counterclockwise.

APPENDIX C
SYMMETRY PROPERTIES OF IMPEDANCE

In this section, a proof of the symmetry property of the
active input impedance is reported. To simplify the problem,
we consider the expression in (13), associated with an infinite
tilted dipole array in free space. However, the same steps
can be followed for all other cases. If we consider only
the fundamental Floquet mode in (13) and scan to θ = θ0,
the active input impedance is

Z in,fs|mx =my=0,θ=θ0

= −1

2πdxdy
j
ζ0

k0
J 2

0

�
ky0w

2

�
·

∞�
−∞

B2
l (kx0 cos α−kz sin α)

k2
0 −(kx0 cos α−kz sin α)2

k2
0 −k2

x0 − k2
y0−k2

z
dkz .

(39)

When scanning in the specular direction θ = −θ0, kx0 and
ky0 change sign and if we apply the change of variable kz =
−k �

z, we obtain

Z in,fs|mx =my=0,θ=−θ0

= −1

2πdxdy
j
ζ0

k0
J 2

0

�
−ky0w

2

�
·

∞�
−∞

B2
l

�
k �

z sin α − kx0 cos α
�

· k2
0 −�

k �
z sin α−kx0 cos α

�2

k2
0 − k2

x0 − k �2
z

dk �
z . (40)

It is evident that (39) and (40) are identical, since the
current spectrum is an even function, i.e., Bl(k)= Bl(−k) and
J0(k)= J0(−k). Similar steps can be followed to demonstrate
the impedance symmetry for the higher order modes. In this
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case, the scan impedance for θ = θ0 is

Z in,fs|θ=θ0

= −1

2πdxdy
j
ζ0

k0

∞�
mx =−∞

∞�
my=−∞

J 2
0

⎛
⎝
�

ky0−2πmy
dy

�
w

2

⎞
⎠

∞�
−∞

B2
l

��
kx0− 2πmx

dx

�
cos α−kz sin α

�
·

k2
0−

��
kx0− 2πmx

dx

�
cos α−kz sin α

�2

k2
0 −

�
kx0− 2πmx

dx

�2−
�

ky0− 2πmy
dy

�2−k2
z

dkz . (41)

For θ = −θ0, by applying the change of variable kz = −k �
z,

mx = −m�
x , and my = −m�

y , we obtain the same expression
for the impedance: Z in,fs|θ=θ0 = Z in,fs|θ=−θ0 . This result is
consistent with the symmetry property of the active reflec-
tion coefficient [28], which is demonstrated in [5] and [6],
for periodic and reciprocal problems.
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