36 research outputs found

    Three-dimensional unstructured grid generation via incremental insertion and local optimization

    Get PDF
    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details

    Treatment of hyperprolactinemia: a systematic review and meta-analysis

    Get PDF

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Clinical course and outcomes of COVID-19 in kidney transplant recipients

    No full text
    Introduction: Kidney transplant recipients (KTR) are at increased risk of morbidity and mortality due to coronavirus disease 2019 (COVID-19). This study aimed to explore the clinical characteristics and outcomes of COVID-19 in KTR. Methods: We reviewed the clinical profile, outcomes, and immunological responses of recipients admitted with COVID-19. We determined the risk factors for mortality and severe COVID-19. Results: Out of 452 recipients on follow-up, 60 were admitted with COVID-19. Prevalent comorbidities were hypertension (71%), diabetes (40%), lung disease (17%). About 27% had tuberculosis. The median Sequential Organ Failure Assessment score at presentation was 3 (interquartile range [IQR] 1–5). There was a high incidence of diarrhea (52%) and anemia (82%). Treatment strategies included antimetabolite withdrawal (85%), calcineurin inhibitor decrease or withdrawal (64%), increased steroids (53%), hydroxychloroquine (21%), remdesivir (28.3%), and tocilizumab (3.3%). Severe COVID-19 occurred in 34 (56.4%) patients. During a median follow-up of 42.5 days (IQR 21–81 days), 83% developed acute kidney injury (AKI) and eight (13%) died. Mortality was associated with the baseline graft dysfunction, hypoxia at admission, lower hemoglobin and platelets, higher transaminases, higher C reactive protein, diffuse radiological lung involvement, hypotension requiring inotropes, and Kidney Diseases Improving Global Outcomes (KDIGO) stage 3 AKI (univariate analysis). Around 57% of patients remained RT-PCR positive at the time of discharge. By the last follow-up, 66.6% of patients developed IgM (immunoglobulin M) antibodies and 82.3% of patients developed IgG antibodies. Conclusion: COVID-19 in kidney transplant recipients is associated with a high risk of AKI and significant mortality
    corecore