2,192 research outputs found

    Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide

    Get PDF
    This is the author accepted manuscript. The final version is available from American Chemical Society via the DOI in this record.We study plasmonic resonances in electrostatically gated graphene nanoribbons on silicon dioxide substrates. Absorption spectra are measured in the mid-far infrared and reveal multiple peaks, with width-dependent resonant frequencies. We calculate the dielectric function within the random phase approximation and show that the observed spectra can be explained by surface-plasmon-phonon-polariton modes, which arise from coupling of the graphene plasmon to three surface optical phonon modes in the silicon dioxide.This research was supported by the UK Engineering and Physical Sciences Research Council, via the award of a Fellowship in Frontier Manufacturing (EP/J018651/1) to G.N., and the European Union under the FET-open grant GOSFEL

    Controlling light-with-light without nonlinearity

    Full text link
    According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorbtion of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators

    Cutting tool tracking and recognition based on infrared and visual imaging systems using principal component analysis (PCA) and discrete wavelet transform (DWT) combined with neural networks

    Get PDF
    The implementation of computerised condition monitoring systems for the detection cutting tools’ correct installation and fault diagnosis is of a high importance in modern manufacturing industries. The primary function of a condition monitoring system is to check the existence of the tool before starting any machining process and ensure its health during operation. The aim of this study is to assess the detection of the existence of the tool in the spindle and its health (i.e. normal or broken) using infrared and vision systems as a non-contact methodology. The application of Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT) combined with neural networks are investigated using both types of data in order to establish an effective and reliable novel software program for tool tracking and health recognition. Infrared and visual cameras are used to locate and track the cutting tool during the machining process using a suitable analysis and image processing algorithms. The capabilities of PCA and Discrete Wavelet Transform (DWT) combined with neural networks are investigated in recognising the tool’s condition by comparing the characteristics of the tool to those of known conditions in the training set. The experimental results have shown high performance when using the infrared data in comparison to visual images for the selected image and signal processing algorithms

    Collision, explosion and collapse of homoclinic classes

    Full text link
    Homoclinic classes of generic C1C^1-diffeomorphisms are maximal transitive sets and pairwise disjoint. We here present a model explaining how two different homoclinic classes may intersect, failing to be disjoint. For that we construct a one-parameter family of diffeomorphisms (gs)s[1,1](g_s)_{s\in [-1,1]} with hyperbolic points PP and QQ having nontrivial homoclinic classes, such that, for s>0s>0, the classes of PP and QQ are disjoint, for s<0s<0, they are equal, and, for s=0s=0, their intersection is a saddle-node.Comment: This is the final version, accepted in 200

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure

    Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    Get PDF
    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology

    Associations of Type 2 Diabetes with Common Variants in PPARD and the Modifying Effect of Vitamin D among Middle-Aged and Elderly Chinese

    Get PDF
    BACKGROUND: Previous studies have identified that variants in peroxisome proliferator-activated receptor PPAR-δ (PPARD), a target gene of vitamin D, were significantly associated with fasting glucose and insulin sensitivity in European populations. This current study sought to determine (1) whether the genetic associations of PPARD variants with type 2 diabetes and its related traits could be replicated in Chinese Han population, and (2) whether the associations would be modified by the effect of vitamin D status. METHODS AND FINDINGS: We genotyped 9 tag single nucleotide polymorphisms (SNPs) that cover the gene of PPARD (rs2267664, rs6902123, rs3798343, rs2267665, rs2267668, rs2016520, rs2299869, rs1053049, and rs9658056) and tested their associations with type 2 diabetes risk and its related traits, including fasting glucose, insulin and HbA1c in 3,210 Chinese Hans. Among the 9 PPARD tag SNPs, rs6902123 was significantly associated with risk of type 2 diabetes (odds ratio 1.75 [95%CI 1.22-2.53]; P = 0.0025) and combined type 2 diabetes and impaired fasting glucose (IFG) (odds ratio 1.47 [95%CI 1.12-1.92]; P = 0.0054). The minor C allele of rs6902123 was associated with increased levels of fasting glucose (P = 0.0316) and HbA1c (P = 0.0180). In addition, we observed that vitamin D modified the effect of rs6902123 on HbA1c (P for interaction = 0.0347). CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that common variants in PPARD contribute to the risk of type 2 diabetes in Chinese Hans, and provided suggestive evidence of interaction between 25(OH)D levels and PPARD-rs6902123 on HbA1c
    corecore