453 research outputs found

    Study of CW gaseous lasers for space communications Semiannual status report, 1 Jul. - 30 Nov. 1966

    Get PDF
    Helium-xenon continuous wave gas lasers for space communications - testing of ultrahigh vacuum system and cascade pumping technique

    Seasonal Migration and Home Ranges of Female Elk in the Black Hills of South Dakota and Wyoming

    Get PDF
    Understanding the movement and dispersion patterns of elk (Cervus elaphus) on public lands and the underlying factors that affect each will facilitate elk management and help resolve conflicts between management that benefit elk and other uses of land resources. Consequently, there is a need to identify and examine the movement and dispersion patterns of elk in the Black Hills of South Dakota and Wyoming. Our study quantified seasonal movements, determined home ranges of female elk in two areas of the Black Hills, and examined underlying factors associated with each. Elk in the northern area did not demonstrate seasonal migration patterns. Rather, winter ranges in the northern area were contained mostly within the boundaries of the summer range. Elk in the southern area exhibited a north-south migration pattern that coincided with seasonal patterns of snowfall. These elk migrated to winter range in late November and returned to summer range in late April. Home ranges of elk in the southern area were larger (P \u3c 0.01) than home ranges in the northern area. Landscape characteristics with marginally-significant correlations to elk home range area included road density (P = 0.10), and forage:cover ratio (P = 0.08); density of primary and secondary roads and average slope were significantly correlated with elk home range area (P \u3c 0.01). Managers can use this information to develop strategies that meet population goals and reduce conflicts between management for elk and with other resources

    Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane

    Get PDF
    During three measurement campaigns on the Baltic and North Seas, atmospheric and dissolved methane was determined with an automated gas chromatographic system. Area-weighted mean saturation values in the sea surface waters were 113 ± 5% and 395 ± 82% (Baltic Sea, February and July 1992) and 126 ± 8% (south central North Sea, September 1992). On the bases of our data and a compilation of literature data the global oceanic emissions of methane were reassessed by introducing a concept of regional gas transfer coefficients. Our estimates computed with two different air-sea exchange models lie in the range of 11-18 Tg CH4 yr-1. Despite the fact that shelf areas and estuaries only represent a small part of the world's ocean they contribute about 75% to the global oceanic emissions. We applied a simple, coupled, three-layer model to numerically simulate the time dependent variation of the oceanic flux to the atmosphere. The model calculations indicate that even with increasing tropospheric methane concentration, the ocean will remain a source of atmospheric methane

    NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex

    Get PDF
    SummaryNeurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPARs) contributed background depolarization to sustain network firing. In contrast, many Response cells were sensitive to AMPAR blockade and increased firing after systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer’s disease profoundly impair cognition

    Limits to sustained energy intake XXIV : impact of suckling behaviour on the body temperatures of lactating female mice

    Get PDF
    We would like to thank the animal house staff and all members of the Energetics group for their invaluable help at various stages throughout the project. This work was supported by Natural Environment Research Council grant (NERC, NE/C004159/1). YG was supported by a scholarship from the rotary foundation. LV was supported by a Rubicon grant from the Netherlands Scientific Organisation (NWO).Peer reviewedPublisher PD

    The Parasite Reduction Ratio (PRR) assay version 2: standardized assessment of Plasmodium falciparum viability after antimalarial treatment in vitro

    Get PDF
    With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction. © 2023 by the authors

    Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake

    Get PDF
    The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of 13C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses

    A high throughput screen for next-generation leads targeting malaria parasite transmission

    Get PDF
    Spread of parasite resistance to artemisinin threatens current frontline antimalarial therapies, highlighting the need for new drugs with alternative modes of action. Since only 0.2–1% of asexual parasites differentiate into sexual, transmission-competent forms, targeting this natural bottleneck provides a tangible route to interrupt disease transmission and mitigate resistance selection. Here we present a high-throughput screen of gametogenesis against a ~70,000 compound diversity library, identifying seventeen drug-like molecules that target transmission. Hit molecules possess varied activity profiles including male-specific, dual acting male–female and dual-asexual-sexual, with one promising N-((4-hydroxychroman-4-yl)methyl)-sulphonamide scaffold found to have sub-micromolar activity in vitro and in vivo efficacy. Development of leads with modes of action focussed on the sexual stages of malaria parasite development provide a previously unexplored base from which future therapeutics can be developed, capable of preventing parasite transmission through the population
    corecore