39 research outputs found

    The polyclad fauna (Platyhelminthes, Rhabditophora) of the Sinop Peninsula (Black Sea, Turkey) with the description of a new species of Cryptocelis Lang, 1884

    Get PDF
    Between October 2013 and July 2014, 40 polyclad specimens were collected during the systematic sampling of mussel beds along the coast of the Sinop Peninsula (Western Black Sea). Six species were identified, including a new Cryptocelis species. Cryptocelis sinopae sp. nov. is characterized by possessing a prostatic vesicle lined with a ridged fold in its anterior end and the presence of two secretory glandular folds in the distal dorsal wall of male atrium. Additionally, new records of Echinoplana celerrima Haswell, 1907 and Leptoplana mediterranea (Bock, 1913) are reported for the Black Sea and Turkey; and Leptoplana tremellaris (Müller OF, 1774) and Prosthiostomum siphunculus Delle Chiaje, 1822 for the coast of the Black Sea of Turkey. A short description of the reproductive behaviour of Pleioplana okusi Bulnes, Kalkan and Karahan, 2009 and Cryptocelis sinopae sp. nov. will be also provided

    Grafting melons onto potential cucumis spp. rootstocks

    Get PDF
    Cucumís melo is an economically importar]t crop. Its culture is hampered by differen t types of soil stresses. Grafting melons onto different resistant cucurbits belonging to the genera, Cucurbíta, Lagenaría, Luffa, etc. have been successfully used to avoid these problems. However, me Ion quality has been nega.tively modified as a consequence of grafting. In general, variation in fruit shape, seed cavity and sugar content have been observed. The use of rootstocks more genetically c\oser to the melon scions could be useful to obtain fru i ts with better quality from melon grafted plantsPostprint (published version

    Cardiac autonomic control in the obstructive sleep apnea

    Get PDF
    Introduction: The sympathetic activation is considered to be the main mechanism involved in the development of cardiovascular diseases in obstructive sleep apnea (OSA). The heart rate variability (HRV) analysis represents a non-invasive tool allowing the study of the autonomic nervous system. The impairment of HRV parameters in OSA has been documented. However, only a few studies tackled the dynamics of the autonomic nervous system during sleep in patients having OSA.Aims: To analyze the HRVover sleep stages and across sleep periods in order to clarify the impact of OSA on cardiac autonomic modulation. The second objective is to examine the nocturnal HRV of OSA patients to find out which HRV parameter is the best to reflect the symptoms severity.Methods: The study was retrospective. We have included 30 patients undergoing overnight polysomnography. Subjects were categorized into two groups according to apneahypopnea index (AHI): mild-to-moderate OSAS group (AHI: 5-30) and severe OSAS group (AHI>30). The HRV measures for participants with low apneahypopnea indices were compared to those of patients with high rates of apneahypopnea across the sleep period and sleep stages.Results: HRV measures during sleep stages for the group with low rates of apneahypopnea have indicated a parasympathetic activation during non-rapid eye movement (NREM) sleep. However, no significant difference has been observed in the high AHI group except for the mean of RR intervals (mean RR). The parasympathetic activity tended to increase across the night but without a statistical difference. After control of age and body mass index, the most significant correlation found was for the mean RR (p =0.0001, r = -0.248).Conclusion: OSA affects sympathovagal modulation during sleep, and this impact has been correlated to the severity of the disease. The mean RR seemed to be a better index allowing the sympathovagal balance appreciation during the night in OSA.Keywords: autonomic nervous system; sleep apnea; heart rate; sleep; circadia

    Improvement of regeneration in pepper: a recalcitrant species

    Full text link
    [EN] Organogenesis is influenced by factors like genotype, type of explant, culture medium components, and incubation conditions. The influence of ethylene, which can be produced in the culture process, can also be a limiting factor in recalcitrant species like pepper. In this work, bud induction was achieved from cotyledons and hypocotyls-from eight pepper cultivars-on Murashige and Skoog (MS) medium supplemented with 22.2 mu M 6-benzyladenine (6BA) and 5.71 mu M indole-3-acetic acid (IAA), in media with or without silver nitrate (SN) (58.86 mu M), a suppressor of ethylene action. In the SN-supplemented medium, the frequencies of explants with buds and with callus formation were lower in both kinds of explant, but higher numbers of developed shoots were isolated from explants cultured on SN. Bud elongation was better in medium with gibberellic acid (GA(3)) (2.88 mu M) than in medium free of growth regulators or supplemented with 1-aminocyclopropane-1-carboxylic acid (ACC) at 34.5 mu M. However, isolation of shoots was difficult and few plants were recovered. The effect of adding SN following bud induction (at 7 d) and that of dark incubation (the first 7 d of culture) was also assessed in order to improve the previous results. When SN was added after bud induction, similar percentages of bud induction were found for cotyledons (average frequency 89.37% without SN and 94.37% with SN) whereas they doubled in hypocotyls (50% without SN and 87.7% with SN). In addition, in both kinds of explant, the number of developed plants able to be transferred to soil (developed and rooted) was greatly increased by SN. Dark incubation does not seem to improve organogenesis in pepper, and hypocotyl explants clearly represent a better explant choice-with respect to cotyledonary explants-for the pepper cultivars assayed.We thank the COMAV germplasm bank at Universitat Politecnica de Valencia and the Arid Lands Institute for pepper seeds and the Tunisian Ministry of Higher Education and Scientific Research who fund N. Gammoudi's stay.Gammoudi, N.; San Pedro-Galan, T.; Ferchichi, A.; Gisbert Domenech, MC. (2018). Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cellular & Developmental Biology - Plant. 54(2):145-153. https://doi.org/10.1007/s11627-017-9838-1S145153542Ashrafuzzaman M, Hossain MM, Razi Ismail M, Shahidul Haque M, Shahidullah SM, Uz Zaman S (2009) Regeneration potential of seedling explants of chilli (Capsicum annuum). Afr J Biotechnol 8:591–596Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297Brown DC, Thorpe TA (1995) Crop improvement through tissue culture. World J Microbiol Biotechnol 11:409–415Carvalho MAF, Paiva R, Stein VC, Herrera RC, Porto JMP, Vargas DP, Alves E (2014) Induction and morpho-ultrastructural analysis of organogenic calli of a wild passion fruit. Braz Arch Biol Technol 57:581–859Christopher T, Rajam MV (1996) Effect of genotype, explant and medium on in vitro regeneration of red pepper. Plant CellTiss Org Cult 46:245–250Dabauza M, Peña L (2001) High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regul 33:221–229De Filippis LF (2014) Crop improvement through tissue culture. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds) Improvement of crops in the era of climate changes, vol 1. Springer, New York, pp 289–346Gammoudi N, Ben Yahia L, Lachiheb B, Ferchichi A (2016) Salt response in pepper (Capsicum annuum L.): components of photosynthesis inhibition, proline accumulation and K+/Na+ selectivity. JJ Aridland Agri 2:1–12González A, Arigita L, Majada J, Sánchez Tamés R (1997) Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regul 22:1–6Grozeva S, Rodeva V, Todorova V (2012) In vitro shoot organogenesis in Bulgarian sweet pepper (Capsicum annuum L.) varieties. EJBio 8:39–44Gunay AL, Rao PS (1978) In vitro plant regeneration from hypocotyls and cotyledon explants of red pepper (Capsicum). Plant Sci Lett 11:365–372Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation in light- and dark-grown tobacco callus: the role of ethylene. Physiol Plant 53:319–326Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro-Plant 32:72–80Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48Kumar AO, Rupavathi T, Tata SS (2012) Adventitious shoot bud induction in chili pepper (Capsicum annuum L. cv. X-235). In J Sci Nat 3:192–196Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103Liu W, Parrott WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364Maligeppagol M, Manjula R, Navale PM, Babu KP, Kumbar BM, Laxman RH (2016) Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance. Indian J Biotechnol 15:17–24Mantiri FR, Kurdyukov S, Chen SK, Rose RJ (2008) The transcription factor MtSERF1 may function as a nexus between stress and development in somatic embryogenesis in Medicago truncatula. Plant Signal Behav 3:498–500Mezghani N, Jemmali A, Elloumi N, Gargouri-Bouzid R, Kintzios S (2007) Morpho-histological study on shoot bud regeneration in cotyledon cultures of pepper (Capsicum annuum). Biologia 62:704–710Mohamed-Yasseen Y (2001) Influence of agar and activated charcoal on uptake of gibberellin and plant morphogenesis in vitro. In Vitro Cell Dev Biol - Plant 37:204–205Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: ethylene. In: George EF, Hall MA, Klerk G-JD (eds) Plant propagation by tissue culture, vol 1, 3rdedn. Springer, Dordrecht, The Netherlands, pp 239–248Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Nogueira RC, Paiva R, de Oliveira LM, Soares GA, Soares FP, Castro AHF, Paiva PDO (2007) Calli induction from leaf explants of murici-pequeno (Byrsonima intermedia A. Juss.) Ciênc Agrotec 31:366–370Ochoa-Alejo N, Ramirez-Malagon R (2001) In vitro chili pepper biotechnology. In Vitro Cell Devl Biol Plant 37:701–729Orlińska M, Nowaczy P (2015) In vitro plant regeneration of 4 Capsicum spp. genotypes using different explant types. Turk J Biol 39:60–68Reid MS (1995) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Acad Publ, Dordrecht, The Netherlands, pp 486–508Sanatombi K, Sharma GJ (2008) In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biol Plant 52:141–145Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, Montalvo-Peniche MC, Zapata-Castillo PY, Solís-Ruiz A, Zaldívar-Collí A, Gutiérrez-Alonso O, Miranda-Ham ML (2005) Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. Hortscience 40:1829–1831Santana-Buzzy N, Canto-Flick A, Iglesias-Andreu LG, Montalvo-Peniche MC, López-Puc G, Barahona-Pérez F (2006) Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. Hortscience 41:405–409Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774Shah SH, Ali S, Jan SA, Din J, Ali GM (2014) Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (Solanum lycopersicum Mill.) Pakistan J Bot 46:2163–2172Steinitz B, Wolf D, Matzevitch-Josef T, Zelcer A (1999) Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): the current state of the art. Capsicum Eggplant Plant Newsletter 18:9–15Tamimi SM (2015) Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.) Afr J Biotechnol 14:2510–2516Trujillo-Moya C, Gisbert C (2012) The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tissue Organ Cult 111:41–48Yasmin S, Mensuali-Sodi A, Perata P, Pucciariello C (2014) Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. Plant Growth Reg 72:97–103Zhao Y, Stiles AR, Saxena PK, Liu CZ (2013) Dark preincubation improves shoot organogenesis from Rhodiola crenulata leaf explants. Biol Plant 57:189–19

    Grafting melons onto potential cucumis spp. rootstocks

    No full text
    Cucumís melo is an economically importar]t crop. Its culture is hampered by differen t types of soil stresses. Grafting melons onto different resistant cucurbits belonging to the genera, Cucurbíta, Lagenaría, Luffa, etc. have been successfully used to avoid these problems. However, me Ion quality has been nega.tively modified as a consequence of grafting. In general, variation in fruit shape, seed cavity and sugar content have been observed. The use of rootstocks more genetically c\oser to the melon scions could be useful to obtain fru i ts with better quality from melon grafted plant

    Physiological and Biochemical Responses in Microalgae <i>Dunaliella salina</i>, <i>Cylindrotheca closterium</i> and <i>Phormidium versicolor</i> NCC466 Exposed to High Salinity and Irradiation

    No full text
    Dunaliella salina (Chlorophyceae), Phormidium versicolor (Cyanophyceae), and Cylindrotheca closterium (Bacillariophyceae) were isolated from three ponds in the solar saltern of Sfax (Tunisia). Growth, pigment contents, and photosynthetic and antioxidant enzyme activities were measured under controlled conditions of three light levels (300, 500, and 1000 µmol photons m−2 s−1) and three NaCl concentrations (40, 80, and 140 g L−1). The highest salinity reduced the growth of D. salina and P. versicolor NCC466 and strongly inhibited that of C. closterium. According to ΦPSII values, the photosynthetic apparatus of P. versicolor was stimulated by increasing salinity, whereas that of D. salina and C. closterium was decreased by irradiance rise. The production of carotenoids in D. salina and P. versicolor was stimulated when salinity and irradiance increased, whereas it decreased in the diatom. Catalase (CAT), Superoxide dismutase (SOD), and Ascorbate peroxidase (APX) activities were only detected when the three species were cultivated under E1000. The antioxidant activity of carotenoids could compensate for the low antioxidant enzyme activity measured in D. salina. Salinity and irradiation levels interact with the physiology of three species that have mechanisms of more or less effective stress resistance, hence different resistance to environmental stresses according to the species. Under these stress-controlled conditions, P. versicolor and C. closterium strains could provide promising sources of extremolyte for several purposes

    Grafting melons onto potential cucumis spp. rootstocks

    No full text
    Cucumís melo is an economically importar]t crop. Its culture is hampered by differen t types of soil stresses. Grafting melons onto different resistant cucurbits belonging to the genera, Cucurbíta, Lagenaría, Luffa, etc. have been successfully used to avoid these problems. However, me Ion quality has been nega.tively modified as a consequence of grafting. In general, variation in fruit shape, seed cavity and sugar content have been observed. The use of rootstocks more genetically c\oser to the melon scions could be useful to obtain fru i ts with better quality from melon grafted plant
    corecore