35 research outputs found

    Peroxyoxalate chemiluminescence enhanced by oligophenylenevinylene fluorophores in the presence of various surfactants

    Get PDF
    Article first published online: 15 JAN 2014The effect of several surfactants on peroxyoxalate chemiluminescence (PO-CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO-CL efficiency. Various effects of anionic, cationic, amphoteric and non-ionic surfactants on the CL efficiency of PO-CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non-ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non-ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water-insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd

    The Mesolithic-Neolithic transition in southern Iberia

    Get PDF
    New data and a review of historiographic information from Neolithic sites of the Malaga and Algarve coasts (southern Iberian Peninsula) and from the Maghreb (North Africa) reveal the existence of a Neolithic settlement at least from 7.5 cal ka BP. The agricultural and pastoralist food producing economy of that population rapidly replaced the coastal economies of the Mesolithic populations. The timing of this population and economic turnover coincided with major changes in the continental and marine ecosystems, including upwelling intensity, sea-level changes and increased aridity in the Sahara and along the Iberian coast. These changes likely impacted the subsistence strategies of the Mesolithic populations along the Iberian seascapes and resulted in abandonments manifested as sedimentary hiatuses in some areas during the Mesolithic-Neolithic transition. The rapid expansion and area of dispersal of the early Neolithic traits suggest the use of marine technology. Different evidences for a Maghrebian origin for the first colonists have been summarized. The recognition of an early North-African Neolithic influence in Southern Iberia and the Maghreb is vital for understanding the appearance and development of the Neolithic in Western Europe. Our review suggests links between climate change, resource allocation, and population turnover. (C) 2011 University of Washington. Published by Elsevier Inc. All rights reserved.Fundacao para a Ciencia e a Tecnologia (Portugal); European Science Foundation [PTDC/HAH/64548/2006]; European Union; Fundacao para a Ciencia e Tecnologia; Ministerio de Ciencia e Innovacion, Spain [HAR 2008-1920, CGL2009-07603, CTM2009-07715, CSD2006-00041, HAR2008-06477-C03-03/HIST]; European Research Council [2008-AdG 230561]; MARM [200800050084447]; Project RNM [05212]; Junta de Andalucia, Spain [0179]; FCT [SFRH/BPD/26525/2006]; CSIC "JAE-Doc"info:eu-repo/semantics/publishedVersio

    In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize

    No full text
    A fundamental step in addressing the global problem of mycotoxins is the development of highly sensitive, multi-class extraction and detection methods. This constitutes a field of research that has in recent years enjoyed a steady advance. Such methods, generally based on liquid chromatography coupled to mass spectrometry, are widely reported successfully detecting various mycotoxins in different food and feed samples. In this work, an innovative approach to multi-class mycotoxin control is proposed, offering specific advantages: a broader inclusion of more mycotoxin classes, robust and thorough extraction for all target compounds despite their varied chemical properties, and determination of all analytes from a single injection. The method involved the extraction and quantification of the main mycotoxins produced by Aspergillus, Fusarium, and Penicillium fungi, as well as their reported derivatives, together with 12 other compounds most commonly produced by Claviceps purpurea. The popularly reported QuEChERS technique has been reduced to a simple "salting-out liquid-liquid extraction" (SO-LLE) to obtain the most efficient extraction of the aforementioned mycotoxin classes in a very short time. This is in particular extremely important in ensuring correct determination of individual ergot alkaloids, for which short and robust sample preparation as well as short analytical sequences were key for minimizing the epimerization during analysis. The analyses of wheat and maize samples were performed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Matrix-matched calibration curves were established and limits of quantification were below the maximum levels established by the EU regulation. The precision (repeatability and intermediate precision) was lower than 13% in all cases and recoveries ranged between 60 and 98% in maize and between 62 and 103% in wheat, fulfilling the current legislation. The method was applied to study the co-occurrence of these mycotoxins in wheat (n = 13) and maize (n = 15) samples from six European countries. A successful quantification of 23 different mycotoxins, from all major classes, in 85% of wheat and 93% of maize samples was achieve

    Ion mobility-mass spectrometry to extend analytical performance in the determination of ergot alkaloids in cereal samples

    No full text
    This work evaluates the potential of ion mobility spectrometry (IMS) to improve the analytical performance of current liquid chromatography-mass spectrometry (LC-MS) workflows applied to the determination of ergot alkaloids (EAs) in cereal samples. Collision cross section (CCS) values for EA epimers are reported for the first time to contribute to their unambiguous identification. Additionally, CCS values have been inter-laboratory cross-validated and compared with CCS values predicted by machine-learning models. Slight differences were observed in terms of CCS values for ergotamine, ergosine and ergocristine and their corresponding epimers (from 3.3 to 4%), being sufficient to achieve a satisfactory peak-to-peak resolution for their unequivocal identification. A LC-travelling wave ion mobility (TWIM)-MS method has been developed for the analysis of EAs in barley and wheat samples. Signal-to-noise ratio (S/N) was improved between 2.5 and 4-fold compared to the analog LC-TOF-MS method. The quality of the extracted ion chromatograms was also improved by using IMS
    corecore