320 research outputs found

    Obscenity: Andres Serrano Controversy (1989): Report 02

    Get PDF

    Development of an on-disc isothermal in vitro amplification and detection of bacterial RNA

    Get PDF
    This document is the Accepted Manuscript version, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). The final, published version is available online at doi: https://doi.org/10.1016/j.snb.2016.08.018. Published by Elsevier B. V.We present a centrifugal microfluidic “Lab-on-a-Disc” (LoaD) system capable of implementing nucleic acid in vitro amplification using non-contact heating and fluorescence detection. The system functionality is verified by implementing a Nucleic Acid Sequence Based Amplification (NASBA) reaction, targeting the tmRNA transcript of Haemophilus influenzae. The NASBA assay incorporates fluorescent molecular beacon probes reporting target tmRNA amplification for endpoint detection. The system implements non-contact IR heating to heat the NASBA reaction to the required target temperatures during denaturation and amplification steps. The LoaD control system facilitates spin speed and chamber positioning for heating and fluorescence detection. The LoaD alignment system uses magnetic fields to locate and lock the chamber in the required position (heating or detection). The NASBA assay was implemented on the system using Haemophilus influenzae tmRNA over the range 102–104 cell equivalent (CE) units. For comparison, identical qNASBA assays were implemented on a Roche LightCycler 2.0 over this concentration range.Peer reviewe

    A metal-free organic–inorganic aqueous flow battery

    Get PDF
    As the fraction of electricity generation from intermittent renewable sources—such as solar or wind—grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output1,2^{1, 2}. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form3,4,5^{3, 4, 5}. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts6,7^{6, 7}. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/BrBr_2/Br^- redox couple, yields a peak galvanic power density exceeding 0.6 W cm^{−2} at 1.3 A cm^{−2}. Cycling of this quinone–bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals8^8. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.Chemistry and Chemical BiologyEngineering and Applied Science

    Creating a FACETS digital toolkit to promote quality of life of people with multiple sclerosis through Participatory Design

    Get PDF
    In this paper, we report on the first stages of creating a stand-alone digital toolkit focusing on the homework elements of FACETS (Fatigue: Applying Cognitive behavioural and Energy effectiveness Techniques to lifeStyle). FACETS is an evidence-based face-to-face fatigue management group programme for people with multiple sclerosis. This paper details the participatory design process from requirements elicitation to initial prototyping and how offline activities linked to each session have been mapped in the digitised solution (mobile app)

    Radio-Continuum study of the Nearby Sculptor Group Galaxies. Part 1: NGC 300 at lambda = 20 cm

    Full text link
    A series of new radio-continuum (lambda=20 cm) mosaic images focused on the NGC 300 galactic system were produced using archived observational data from the VLA and/or ATCA. These new images are both very sensitive (rms=60 microJy) and feature high angular resolution (<10"). The most prominent new feature is the galaxy's extended radio-continuum emission, which does not match its optical appearance. Using these newly created images a number of previously unidentified discrete sources have been discovered. Furthermore, we demonstrate that a joint deconvolution approach to imaging this complete data-set is inferior when compared to an immerge approach.Comment: 13 pages, 12 figures, accepted to APSS, new version to correct the missing reference

    Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions

    Full text link
    We use data on an interplanetary coronal mass ejection (ICME) seen by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and STEREO A starting on 29 December 2011 in a near‐perfect longitudinal conjunction (within 3°) to illustrate changes in its structure via interaction with the solar wind in less than 0.6 AU. From force‐free field modeling we infer that the orientation of the underlying flux rope has undergone a rotation of ∼80° in latitude and ∼65° in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interaction involving magnetic reconnection with corotating structures in the solar wind dramatically alters the ICME magnetic field. In particular, we observed a highly turbulent region with distinct properties within the flux rope at STEREO A, not observed at MESSENGER, which we attribute to interaction between the ICME and a heliospheric plasma sheet/current sheet during propagation. Our case study is a concrete example of a sequence of events that can increase the complexity of ICMEs with heliocentric distance even in the inner heliosphere. The results highlight the need for large‐scale statistical studies of ICME events observed in conjunction at different heliocentric distances to determine how frequently significant changes in flux rope orientation occur during propagation. These results also have significant implications for space weather forecasting and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients.Key PointsICME complexity increases due to interaction with corotating structures in the solar windMagnetic reconnection between ICME and HPS/HCS alters the magnetic topology of the ICME flux ropeCaution on using distant observations to predict the geoeffectiveness of interplanetary transientsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134123/1/jgra52739.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134123/2/jgra52739_am.pd

    Ultra-deep ATCA imaging of 47 Tucanae reveals a central compact radio source

    Full text link
    We present the results of an ultra-deep radio continuum survey, containing 480\sim480 hours of observations, of the Galactic globular cluster 47 Tucanae with the Australia Telescope Compact Array. This comprehensive coverage of the cluster allows us to reach RMS noise levels of 1.19 μJy beam1\mu Jy~\textrm{beam}^{-1} at 5.5 GHz, 940 nJy beam1nJy~\textrm{beam}^{-1} at 9 GHz, and 790 nJy beam1nJy~\textrm{beam}^{-1} in a stacked 7.25 GHz image. This is the deepest radio image of a globular cluster, and the deepest image ever made with the Australia Telescope Compact Array. We identify ATCA J002405.702-720452.361, a faint (6.3±1.26.3\pm1.2 μJy\mu Jy at 5.5 GHz, 5.4±0.95.4\pm0.9 μJy\mu Jy at 9 GHz), flat-spectrum (α=0.31±0.54\alpha=-0.31\pm0.54) radio source that is positionally coincident with the cluster centre and potentially associated with a faint X-ray source. No convincing optical counterpart was identified. We use radio, X-ray, optical, and UV data to show that explanations involving a background active galactic nucleus, a chromospherically active binary, or a binary involving a white dwarf are unlikely. The most plausible explanations are that the source is an undiscovered millisecond pulsar or a weakly accreting black hole. If the X-ray source is associated with the radio source, the fundamental plane of black hole activity suggests a black hole mass of 546000\sim54-6000 M_{\odot}, indicating an intermediate-mass black hole or a heavy stellar-mass black hole.Comment: ApJ in press, 25 pages, 10 figure
    corecore