83 research outputs found

    Theoretical Investigation Of Model Polymers For Eumelanins. Ii. Isolated Defects

    Get PDF
    We investigate here defects in initially ordered polymers of 5,6-indolequinone, in one or other redox form. The defects studied include aggregation of the carboxyl radical into one skeleton monomer, the aggregation of a host monomer in a lateral misplaced position, and faults in the polymerization sequencing. Our study is carried out, as in the first paper I, through Hückel π-electron theory, and results are compared to the perfect structures in I. Our results indicate that the end-type defect suggested as an electron capture center in I is not deactivated by these other structural defects, and that new capture centers might be introduced that could also be responsible for the acceptor behavior of melanins. © 1990 American Institute of Physics.9342848285

    Theoretical Investigation Of Model Polymers For Eumelanins. I. Finite And Infinite Polymers

    Get PDF
    We investigate the electronic structure of ideal ordered polymers of 5,6-indolequinone, in one or other redox form. These molecules are the most abundant constituents of eumelanin, the pigment appearing in human skin. Our study is carried out through Hückel π-electron theory, which allows us to follow the trends in electronic structure from a single monomer - the isolated molecules - to finite polymers of up to 10 units, and to infinite polymers. We have chosen different polymerization directions which produce semiconducting chains. The comparison between finite and infinite polymers is very useful and leads us to propose a model that accounts for some of the known properties of eumelanins. © 1990 American Institute of Physics.9242630263

    Polymerization Of 5,6-indolequinone: A View Into The Band Structure Of Melanins

    Get PDF
    We present for the first time a study of finite and infinite polymers of 5,6-indolequinone. We show that the band structure of the infinite polymer presents semiconductor characteristics, and that the intrinsic paramagnetism of eumelanin can be modeled through electron trapping at deep "end- effect" defects. © 1988 American Institute of Physics.8864088409

    Spatially Variable Reaction In The Formation Of Anodically Grown Porous Silicon Structures

    Get PDF
    In porous silicon formations there is an increase of dissolution rate at the fluorine-covered sites of the silicon surface due to the presence of excess electrons coming from oxidation of molecular hydrogen at the passivated (hydrogen-covered) sites. The dissolution rate increase in the presence of excess charge at the fluorine-covered sites is experimentally measured and a theoretical investigation is carried out by a semiempirical Hartree-Fock calculation. This spatially variable dissolution generates the porous silicon surface. © 1995 American Institute of Physics.78159059

    A Parametric Method 3 (pm3) Study Of Trans-stilbene

    Get PDF
    We report a comparative modified neglect of diatomic overlap (MNDO), Austin method one (AM1), and parametric method 3 (PM3) study of trans-stilbene (tS) in its ground, excited (singlet and triplet), and ionic (positive and negative polarons and bipolarons) states. We have also calculated the barrier for ring rotation about the backbone single bond. Our results show that PM3 geometries are superior to MNDO and AM1, at least for tS. PM3 predicts, in contrast with MNDO, AM1 and even ab initio 3-21G, a coplanar structure for tS, in accordance with recent experimental data. Singlet and triplet energies obtained from heats of formation are in surprisingly good agreement with experimental data. © 1993 American Institute of Physics.9843016302

    Rotational Dynamics And Polymerization Of C60 In C60 -cubane Crystals: A Molecular Dynamics Study

    Get PDF
    We report classical and tight-binding molecular dynamics simulations of the C60 fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C60 fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed. © 2008 American Institute of Physics.1296Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., (1985) Nature (London), 318, p. 162. , 0028-0836 10.1038/318162a0Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., (1995) Science of Fullerenes and Carbon Nanotubes, , (Academic, San Diego, CA)Heiney, P.A., Fischer, J.E., McGhie, A.R., Romanow, W.J., Denenstein, A.M., Mccauley Jr., J.P., Smith, A.B., Cox, D.E., (1991) Phys. Rev. Lett., 66, p. 2911. , 0031-9007 10.1103/PhysRevLett.66.2911Saito, S., Oshiyama, A., (1991) Phys. Rev. Lett., 66, p. 2637. , 0031-9007 10.1103/PhysRevLett.66.2637Sundqvist, B., (1999) Adv. Phys., 48, p. 1. , 0001-8732 10.1080/000187399243464Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, L.J., Yagi, T., (1994) Science, 264, p. 1570. , 0036-8075 10.1126/science.264.5165.1570Núez-Regueiro, M., Marques, L., Hodeau, J.-L., B́thoux, O., Perroux, M., (1995) Phys. Rev. Lett., 74, p. 278. , 0031-9007 10.1103/PhysRevLett.74.278Goze, C., Rachdi, F., Hajji, L., Núez-Regueiro, M., Marques, L., Hodeau, J.-L., Mehring, M., (1996) Phys. Rev. B, 54, p. 3676. , 0163-1829 10.1103/PhysRevB.54.R3676Talyzin, A.V., Dubrovinsky, L.S., Le Bihan, T., Jansson, U., (2002) Phys. Rev. B, 65, p. 245413. , 0163-1829 10.1103/PhysRevB.65.245413Rao, A.M., Zhou, P., Wang, K.A., Hager, G.T., Holden, J.M., Wang, U., Lee, W.T., Amster, I.J., (1993) Science, 259, p. 955. , 0036-8075Ranjan, K., Dharamvir, K., Jindal, V.K., (2006) Physica B (Amsterdam), 371, p. 232. , 0921-4526Pennington, C.H., Stenger, V.A., (1996) Rev. Mod. Phys., 68, p. 855. , 0034-6861 10.1103/RevModPhys.68.855Varshney, D., Varshney, M., Singhb, R.K., Mishraa, R., (1999) J. Phys. Chem. Solids, 60, p. 579. , 0022-3697 10.1016/S0022-3697(98)00327-8Aleksandrovskii, A.N., Gavrilko, V.G., Eselson, V.B., Manzhelii, V.G., Udovidchenko, B.G., Maletskiy, V.P., Sundqvist, B., (2001) Low Temp. Phys., 27, p. 1033. , 1063-777X 10.1063/1.1430848Tang, T.B., Gu, M., (2002) Phys. Solid State, 44, p. 631. , 1063-7834 10.1134/1.1470544Shul'ga, Yu.M., Martynenko, V.M., Shestakov, A.F., Baskakov, S.A., Kulikov, S.V., Vasilets, V.N., Makarova, T.L., Morozov, Yu.G., (2006) Russ. Chem. Bull., 55, p. 687Eaton, P.E., (1992) Angew. Chem., Int. Ed. Engl., 31, p. 1421. , 0570-0833 10.1002/anie.199214211Pekker, S., Kováts, É., Oszlányi, G., B́nyei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Faigel, G., (2005) Nat. Mater., 4, p. 764. , 1476-1122 10.1038/nmat1468Kováts, É., Klupp, G., Jakab, E., Pekker, ., Kamarás, K., Jalsovszky, I., Pekker, S., (2006) Phys. Status Solidi B, 243, p. 2985. , 0370-1972 10.1002/pssb.200669195Pekker, S., Kováts, É., Oszlányi, G., B́nyei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Faigel, G., (2006) Phys. Status Solidi B, 243, p. 3032. , 0370-1972 10.1002/pssb.200669136Iwasiewicz-Wabnig, A., Sundqvist, B., Kováts, É., Jalsovszky, I., Pekker, S., (2007) Phys. Rev. B, 75, p. 024114. , 0163-1829 10.1103/PhysRevB.75.024114Mackerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., (1998) J. Phys. Chem. B, 102, p. 3586. , 1089-5647 10.1021/jp973084fPhillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., (2005) J. Comput. Chem., 26, p. 1781. , 0192-8651 10.1002/jcc.20289Brünger, A., Brooks, C.B., Karplus, M., (1984) Chem. Phys. Lett., 105, p. 495. , 0009-2614 10.1016/0009-2614(84)80098-6Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation: From Algorithms to Applications, , (Academic, San Diego, CA)Brenner, D.W., (1990) Phys. Rev. B, 42, p. 9458. , 0163-1829 10.1103/PhysRevB.42.9458Porezag, D., Frauenheim, T., Kohler, T., Seifert, G., Kaschner, R., (1995) Phys. Rev. B, 51, p. 12947. , 0163-1829 10.1103/PhysRevB.51.12947Rurali, R., Hernandez, E., (2003) Comput. Mater. Sci., 28, p. 85. , 0927-0256 10.1016/S0927-0256(03)00100-9Terrones, H., Terrones, M., Hernandez, E., Grobert, N., Charlier, J.C., Ajayan, P.M., (2000) Phys. Rev. Lett., 84, p. 1716. , 0031-9007 10.1103/PhysRevLett.84.1716Hernandez, E., Meunier, V., Smith, B.W., Rurali, R., Terrones, H., Nardelii, M.B., Terrones, M., Charlier, J.-C., (2003) Nano Lett., 3, p. 1037. , 1530-6984 10.1021/nl034283fSanz-Serna, J.M., Calvo, M.P., (1995) Numerical Hamiltonian Problems, , (Chapman and Hall, New York)Bond, S.D., Leimkuhler, B.J., Laird, B.B., (1999) J. Comput. Phys., 151, p. 114. , 0021-9991 10.1006/jcph.1998.6171http://www.aip.org/pubservs/epaps.html, See EPAPS Document No. E-JCPSA6-129-508832 for the movie mentioned in the text. For more information on EPAPS, seeBerne, B.J., Pecora, R., (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, , (Dover, Mineola, NY)Williams, G., (1978) Chem. Soc. Rev., 7, p. 89. , 0306-0012 10.1039/cs9780700089Witt, R., Sturz, L., Dolle, A., M.-Plathe, F., (2000) J. Phys. Chem. A, 104, p. 5716. , 1089-5639 10.1021/jp000201Gamba, Z., Powell, B.M., (1996) J. Chem. Phys., 105, p. 2436. , 0021-9606 10.1063/1.472111Winterlich, M., Böhmer, R., Diezemann, G., Zimmermann, H., (2005) J. Chem. Phys., 123, p. 094504. , 0021-9606 10.1063/1.2013254Johnson, R.D., Yannoni, C.S., Dorn, H.C., Salem, J.R., Bethune, D.S., (1992) Science, 255, p. 1235. , 0036-8075 10.1126/science.255.5049.1235Tycko, R., Dabbagh, G., Fleming, R.M., Haddon, R.C., Makhija, A.V., Zahurak, S.M., (1991) Phys. Rev. Lett., 67, p. 1886. , 0031-9007 10.1103/PhysRevLett.67.1886The fitting for the range of 241-331 K for the reorientational correlation time τr in picoseconds is τr =0.81 ex(695/T), where T is the temperature in kelvins (Ref.)Li, Z., Anderson, S.L., (2003) J. Phys. Chem. A, 107, p. 1162. , references therein. 1089-5639Density functional theory calculations were performed with the SIESTA code (Refs.) in the local density approximation based on the Perdew-Zunger construction (Ref.) with the pseudopotential generated according to the Troullier-Martins scheme (Ref.). The standard double zeta plus polarization basis was used. Both pseudopotential and basis set were optimized according to Junqueira (Ref.)Sanchez-Portal, D., Ordejón, P., Artacho, E., Soler, J.M., (1997) Int. J. Quantum Chem., 65, p. 453Soler, J., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sanchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745. , 0953-8984 10.1088/0953-8984/14/11/302Perdew, J.P., Zunger, A., (1981) Phys. Rev. B, 23, p. 5048. , 0163-1829 10.1103/PhysRevB.23.5048Troullier, N., Martins, J.L., (1991) Phys. Rev. B, 43, p. 1993. , 0163-1829 10.1103/PhysRevB.43.1993Junquera, J., Paz, Ó., Sánchez-Portal, D., Artacho, E., (2001) Phys. Rev. B, 64, p. 235111. , 0163-1829 10.1103/PhysRevB.64.235111Martin, H.D., Urbanek, T., Pfohler, P., Walsh, R., J. Chem. Soc., Chem. Commun., 1985, p. 964Martin, H.D., Urbanek, T., Walsh, R., (1985) J. Am. Chem. Soc., 107, p. 5532. , 0002-7863Martin, H.D., Pfohler, P., Urbanek, T., Walsh, R., (1983) Chem. Ber., 116, p. 1415. , 0009-2940Han, S., Yoon, M., Berber, S., Park, N., Osawa, E., Ihm, J., Tománek, D., (2004) Phys. Rev. B, 70, p. 113402. , 0163-1829 10.1103/PhysRevB.70.113402Li, F., Ramage, D., Lannin, J.S., Conceicao, J., (1991) Phys. Rev. B, 44, p. 1316

    Indication Of Unusual Pentagonal Structures In Atomic-size Cu Namwires

    Get PDF
    A study of the structural and quantum conductance properties of atomic-size copper nanowires generated by mechanical stretching was presented. The time-resolved electron microscopy observations and molecular dynamics simulations were used to derive the atomistic evolution. The quantum transport behavior was analyzed by means of conductance measurements and theoretical calculations. The formation of an unusual and highly pentagonal Cu nanowires with a diameter of ∼0.45 nm and ∼4.5 conductance quanta was also shown.93121261031-126103-4Agraït, N., Yeyati, A.L., Van Ruitenbeek, J.M., (2003) Phys. Rep., 377, p. 81Gulseren, O., Ercolessi, F., Tosatti, E., (1998) Phys. Rev. Lett., 80, p. 3775Kondo, Y., Takayanagi, K., (2000) Science, 289, p. 606Oshima, Y., Onga, A., Takayanagi, K., (2003) Phys. Rev. Lett., 91, p. 205503Ohnishi, H., Kondo, Y., Takayanagi, K., (1998) Nature (London), 395, p. 780Yanson, A.I., (1998) Nature (London), 395, p. 783Rodrigues, V., Fuhrer, T., Ugarte, D., (2000) Phys. Rev. Lett., 85, p. 4124Rego, L.G.C., Rocha, A.R., Rodrigues, V., Ugarte, D., (2003) Phys. Rev. B, 67, p. 045412Rodrigues, V., (2002) Phys. Rev. B, 65, p. 153402Krans, J.M., (1995) Nature (London), 375, p. 767Kondo, Y., Takayanagi, K., (1997) Phys. Rev. Lett., 79, p. 3455Rodrigues, V., Ugarte, D., (2003) Nanowires and Nanobelts, 1, p. 177. , edited by Z. L. Wang Kluwer, DordrechtRodrigues, V., Bettini, J., Silva, P.C., Ugarte, D., (2003) Phys. Rev. Lett., 91, p. 096801Marks, L.D., (1994) Rep. Prog. Phys., 57, p. 603Urban, J., (1998) Cryst. Res. Technol., 33, p. 1009Lisiecki, I., (2000) Phys. Rev. B, 61, p. 4968Emberly, E.G., Kirczenow, G., (1998) Phys. Rev. B, 58, p. 10911(1999) Phys. Rev. B, 60, p. 6028Reinhard, D., (1997) Phys. Rev. Lett., 79, p. 1459Sen, P., (2002) Phys. Rev. B, 65, p. 235433Cleri, F., Rosato, V., (1993) Phys. Rev. B, 48, p. 22Tomànek, D., Aligia, A.A., Balseiro, C.A., (1985) Phys. Rev. B, 32, p. 5051Coura, P.Z., (2004) Nano Lett., 4, p. 1187EPAPS Document No. E-PRLTAO-93-010436, E-PRLTAO-93-010436. , http://www.aip.org/pubservs/epaps.html)orfromftp.aip.orginthedirectory/ epaps, Figure 4 snapshot of a Cu nanowire being elongated along the [110] axis. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached via the EPAPS homepage See the EPAPS homepage for more informatio

    Low-density Three-dimensional Foam Using Self-reinforced Hybrid Two-dimensional Atomic Layers

    Get PDF
    Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure. © 2014 Macmillan Publishers Limited.5Reinfried, M., Hybrid foams-A new approach for multifunctional applications (2011) Adv. Eng. Mater., 13, pp. 1031-1036Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J., Processing routes to macroporous ceramics: A review (2006) Journal of the American Ceramic Society, 89 (6), pp. 1771-1789. , DOI 10.1111/j.1551-2916.2006.01044.xReddy, E.S., Schmitz, G.J., Superconducting foams (2002) Supercond. Sci. Technol., 15, pp. L21-L24Banhart, J., Metal foams: Production and stability (2006) Advanced Engineering Materials, 8 (9), pp. 781-794. , DOI 10.1002/adem.200600071Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams (2001) Progress in Materials Science, 46 (6), pp. 559-632. , DOI 10.1016/S0079-6425(00)00002-5, PII S0079642500000025Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils (2008) Adv. Mater., 20, pp. 1263-1269Cao, X., Preparation of novel 3D graphene networks for supercapacitor applications (2011) Small, 7, pp. 3163-3168Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M., Materials science: Super-compressible foamlike carbon nanotube films (2005) Science, 310 (5752), pp. 1307-1310. , DOI 10.1126/science.1118957Butler, S.Z., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7, pp. 2898-2926Zhou, W., Wang, Z.L., (2011) Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices, , SpringerNovoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (30), pp. 10451-10453. , DOI 10.1073/pnas.0502848102Keller, S.W., Kim, H.-N., Mallouk, T.E., Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular "beaker" epitaxy (1994) Journal of the American Chemical Society, 116 (19), pp. 8817-8818Fendler, J.H., Self-assembled nanostructured materials (1996) Chemistry of Materials, 8 (8), pp. 1616-1624Jones, M.R., Mirkin, C.A., Materials science: Self-assembly gets new direction (2012) Nature, 491, pp. 42-43Zhang, X., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources (2011) J. Mater. Chem., 21, pp. 6494-6497Xu, Y., Sheng, K., Li, C., Shi, G., Self-assembled graphene hydrogel via a onestep hydrothermal process (2010) ACS Nano, 4, pp. 4324-4330Sudeep, P.M., Covalently interconnected three-dimensional graphene oxide solids (2013) ACS Nano, 7, pp. 7034-7040Yan, Z., Three-dimensional metal-graphene-nanotube multifunctional hybrid materials (2013) ACS Nano, 7, pp. 58-64Lu, X., Macroporous foam of reduced graphene oxides prepared by lyophilization (2012) Mater. Res. Bull., 47, pp. 4335-4339Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669. , DOI 10.1126/science.1102896Geim, A.K., Novoselov, K.S., The rise of graphene (2007) Nature Materials, 6 (3), pp. 183-191. , DOI 10.1038/nmat1849, PII NMAT1849Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: A review of graphene (2010) Chem. Rev., 110, pp. 132-145Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Ruoff, R.S., Graphene-based composite materials (2006) Nature, 442 (7100), pp. 282-286. , DOI 10.1038/nature04969, PII NATURE04969Han, Z., Ammonia solution strengthened three-dimensional macro-porous graphene aerogel (2013) Nanoscale, 5, pp. 5462-5467Gao, G., Artificially stacked atomic layers: Toward new van der waals solids (2012) Nano Lett., 12, pp. 3518-3525Britnell, L., Field-effect tunneling transistor based on vertical graphene heterostructures (2012) Science, 335, pp. 947-950Rafiee, M.A., Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites (2013) Adv. Funct. Mater., 23, pp. 5624-5630Liu, Z., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes (2013) Nat. Nanotechnol., 8, pp. 119-124Peng, Q., Zamiri, A.R., Ji, W., De, S., Elastic properties of hybrid graphene/boron nitride monolayer (2012) Acta Mech., 223, pp. 2591-2596Pacile, D., Meyer, J.C., Girit, C.O., Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes (2008) Appl. Phys. Lett., 92, pp. 133107-1331073Pakdel, A., Zhi, C., Bando, Y., Nakayama, T., Golberg, D., Boron nitride nanosheet coatings with controllable water repellency (2011) ACS Nano, 5, pp. 6507-6515Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H., Boron nitride as a lubricant additive (1999) Wear, 232 (2), pp. 199-206. , DOI 10.1016/S0043-1648(99)00146-5, PII S0043164899001465Taha-Tijerina, J., Electrically insulating thermal nano-oils using 2D fillers (2012) ACS Nano, 6, pp. 1214-1220Song, L., Large scale growth and characterization of atomic hexagonal boron nitride layers (2010) Nano Lett., 10, pp. 3209-3215Nag, A., Graphene analogues of BN: Novel synthesis and properties (2010) ACS Nano, 4, pp. 1539-1544Neto, A.H.C., Novoselov, K., Two-dimensional crystals: Beyond graphene (2011) Mater. Exp., 1, pp. 10-17Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: A reactive force field for hydrocarbons (2001) J. Phys. Chem. A, 105, pp. 9396-9409Paci, J.T., Belytschko, T., Schatz, G.C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide (2007) J. Phys. Chem. C, 111, pp. 18099-18111Grantab, R., Shenoy, V.B., Ruoff, R.S., Anomalous strength characteristics of tilt grain boundaries in graphene (2010) Science, 330, pp. 946-948Perim, E., Autreto, P.A.S., Paupitz, R., Galvao, D.S., Dynamical aspects of the unzipping of multiwalled boron nitride nanotubes (2013) Phys. Chem. Chem. Phys., 15, p. 19147Marcano, D.C., Improved synthesis of graphene oxide (2010) ACS Nano, 4, pp. 4806-4814Coleman, J.N., Two-dimensional nanosheets produced by liquid exfoliation of layered materials (2011) Science, 331, pp. 568-571Mortier, W.J., Ghosh, S.K., Shankar, S., Electronegativity-equalization method for the calculation of atomic charges in molecules (1986) J. Am. Chem. Soc., 108, pp. 4315-4320Plimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-1

    Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles

    Get PDF
    publisher: Elsevier articletitle: Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles journaltitle: Carbon articlelink: http://dx.doi.org/10.1016/j.carbon.2017.04.018 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.publisher: Elsevier articletitle: Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles journaltitle: Carbon articlelink: http://dx.doi.org/10.1016/j.carbon.2017.04.018 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.This work was supported in part by the Brazilian Agencies CNPq, CAPES and FAPESP. The authors would like to thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID Grant 2013/08293-7. N.M.P. is supported by the European Research Council PoC 2015 “Silkene” No. 693670, by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 “Polymer Nanocomposites”) and under the Fet Proactive “Neurofibres” No. 732344

    Crystalline Networks With Unusual Predicted Mechanical And Thermal Properties

    No full text
    MOST materials shrink laterally and become less dense when stretched. Materials that both expand laterally (that is, have negative Poisson's ratio) and densify when stretched are of interest both from the fundamental and the practical points of view1-5. A few monocrystalline phases with negative Poisson's ratio are known3,4, but these do not densify when stretched. Here we present molecular-mechanics calculations for some hypothetical phases of carbon which exhibit both kinds of behaviour. The properties derive from the presence of bonds that act as hinges in extended helical chains. Other unusual properties of these phases include negative thermal expansion, dopant-controlled porosity and low-temperature polymorphism. Such structures can be envisaged for polyacetylene, polydiacetylene, polyphenylene and (BN)x phases, as well as for variants of some known, structurally related inorganic phases.365644873473
    corecore