459 research outputs found

    Early explorations in the Gulf of Mexico

    Get PDF

    Ecological and physiological studies of the effect of sulfate pulp mill wastes on oysters in the York River, Virginia

    Get PDF
    This study of the York River and issues impacting the oyster fishery provides historical information on the river\u27s physical and chemical conditions (temperature, salinity, dissolved oxygen, turbidity, currents, etc.) effluent observations, history and data of the oyster fishery, oyster condition, biological and pathological work and experimental studies. The project studies were responsible for the establishment of a fisheries laboratory in Yorktown, Va. p. 59 - Funds for the York River investigations were made available in 1935 by a special allotment from the Public Works Administration. Continuation of the project was made possible by regular allotments by the Bureau of Fisheries and appropriations from the Commonwealth of Virginia through its Commission of Fisheries. In October 1935 a laboratory was established at Yorktown, Va., where a satisfactory supply of sea water was available for physiological studies\u27 on oysters. A boat suitable for the field observations was supplied by the Virginia Commission of Fisheries. Studies of the chemical nature of the pulp-mill effluents were carried on from July 1938 to July 1940 at laboratories made available by the College of William and Mary

    The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs

    Get PDF
    Anamorphic ascomycetes have been implicated as causative agents of diseases in tissues and skeletons of hard corals, in tissues of soft corals (sea fans) and in tissues and shells of molluscs. Opportunist marine fungal pathogens, such as Aspergillus sydowii, are important components of marine mycoplankton and are ubiquitous in the open oceans, intertidal zones and marine sediments. These fungi can cause infection in or at least can be associated with animals which live in these ecosystems. A. sydowii can produce toxins which inhibit photosynthesis in and the growth of coral zooxanthellae. The prevalence of many documented infections has increased in frequency and severity in recent decades with the changing impacts of physical and chemical factors, such as temperature, acidity and eutrophication. Changes in these factors are thought to cause significant loss of biodiversity in marine ecosystems on a global scale in general, and especially in coral reefs and shallow bays

    Genetic identification of source and likely vector of a widespread marine invader

    Get PDF
    The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines

    Expression of calcification‐related ion transporters during blue mussel larval development

    Get PDF
    The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate‐limited approach (low dissolved inorganic carbon, CT) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 μmol/kg) and low CT (ca. 941 μmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low CT exhibited a developmental delay, and a small subset of contigs was differentially regulated between ambient and low CT conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly upregulated (2.3–2.9 fold) under low CT conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium‐transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification

    Comparative study of shell shape and muscle scar pigmentation in the closely related cupped oysters Crassostrea angulata, C-gigas and their reciprocal hybrids

    Get PDF
    The taxonomic status of the cupped oysters Crassostrea angulata and C. gigas has received considerable attention in the last decades. Based on larval shell morphology, experimental hybridization, allozymes and nuclear DNA studies several authors have considered these two taxa as being synonymous. However, mitochondrial data showed clear genetic differences between the two taxa. In addition, microsatellite- based studies and cytogenetic studies have also provided evidence that supports their differentiation. Considerable differences have also been observed at the phenotypic level in terms of growth rate and ecophysiological parameters. In the present study, C. angulata from Sado estuary ( Portugal) and C. gigas from Seudre estuary ( France) were collected and factorial crosses were performed. Juveniles of the different progenies were reared in Ria Formosa ( Portugal) under common conditions to determine if they exhibited differences in shell shape and in pigmentation of the adductor muscle scar. Significant morphometric differences between C. angulata and C. gigas progenies were indicated by univariate and multivariate analyses. Univariate analysis of size- adjusted shell measurements revealed significant differences between the two taxa for shell depth, muscle scar height, and length of ligamental area. Both reciprocal hybrids showed intermediate morphometric characters between parental lines. In addition, significant differences were also observed between C. angulata and C. gigas progenies in terms of pigmentation of adductor muscle scar. C. angulata and both reciprocal hybrid progenies showed highly pigmented adductor muscle scars whereas in C. gigas progeny the pigmentation was lighter. The differences in shell shape and muscle scar pigmentation observed in the present study support the distinction of the two taxa.info:eu-repo/semantics/publishedVersio
    corecore