24 research outputs found

    Brief communication: widespread potential for seawater infiltration on Antarctic ice shelves

    Get PDF
    Antarctica's future contribution to sea level change depends on the fate of its fringing ice shelves. One factor which may affect the rate of iceberg calving from ice shelves is the presence of liquid water, including the percolation of seawater into permeable firn layers. Here, we present evidence that most ice shelves around Antarctica have regions where permeable firn exists below sea level. We find that seawater infiltration into ice shelves may be much more widespread in Antarctica than previously recognised. Finally, we identify the locations where seawater infiltration is most likely to occur, with the intention that the results may be used to direct future radar studies.</p

    Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing

    Get PDF
    Previous studies of Totten Ice Shelf have employed surface velocity measurements to estimate its mass balance and understand its sensitivities to interannual changes in climate forcing. However, displacement measurements acquired over timescales of days to weeks may not accurately characterize long-term flow rates wherein ice velocity fluctuates with the seasons. Quantifying annual mass budgets or analyzing interannual changes in ice velocity requires knowing when and where observations of glacier velocity could be aliased by subannual variability. Here, we analyze 16 years of velocity data for Totten Ice Shelf, which we generate at subannual resolution by applying feature-tracking algorithms to several hundred satellite image pairs. We identify a seasonal cycle characterized by a spring to autumn speedup of more than 100&thinsp;m&thinsp;yr−1 close to the ice front. The amplitude of the seasonal cycle diminishes with distance from the open ocean, suggesting the presence of a resistive back stress at the ice front that is strongest in winter. Springtime acceleration precedes summer surface melt and is not attributable to thinning from basal melt. We attribute the onset of ice shelf acceleration each spring to the loss of buttressing from the breakup of seasonal landfast sea ice.</p

    Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)

    Get PDF
    1] Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the Adélie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the Adélie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the Adélie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the Adélie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr−1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW

    Modelled fracture and calving on the Totten Ice Shelf

    Get PDF
    The Totten Ice Shelf (IS) has a large drainage basin, much of which is grounded below sea level, leaving the glacier vulnerable to retreat through the marine ice sheet instability mechanism. The ice shelf has also been shown to be sensitive to changes in calving rate, as a very small retreat of the calving front from its current position is predicted to cause a change in flow at the grounding line. Therefore understanding the processes behind calving on the Totten IS is key to predicting its future sea level rise contribution. Here we use the Helsinki Discrete Element Model (HiDEM) to show that not all of the fractures visible at the front of the Totten IS are produced locally, but that the across-flow basal crevasses, which are part of the distinctive cross-cutting fracture pattern, are advected into the calving front area from upstream. A separate simulation of the grounding line shows that re-grounding points may be key areas of basal crevasse production, and can produce basal crevasses in both an along- and across-flow orientation. The along-flow basal crevasses at the grounding line may be a possible precursor to basal channels, while we suggest the across-flow grounding-line fractures are the source of the across-flow features observed at the calving front. We use two additional models to simulate the evolution of basal fractures as they advect downstream, demonstrating that both strain and ocean melt have the potential to deform narrow fractures into the broad basal features observed near the calving front. The wide range of factors which influence fracture patterns and calving on this glacier will be a challenge for predicting its future mass loss.</p

    Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica

    Get PDF
    The largest regional drivers of current surface elevation increases in the Antarctic Ice Sheet are associated with ice flow reconfiguration in previously active ice streams, highlighting the important role of ice dynamics in mass balance calculations. Here, we investigate controls on the evolution of the flow configuration of the Vanderford and Totten glaciers – key outlet glaciers of the Aurora Subglacial Basin (ASB) – the most rapidly thinning region of the East Antarctic Ice Sheet (EAIS). We synthesise factors that influence the ice flow in this region and use an ice sheet model to investigate the sensitivity of the catchment divide location to changes in surface elevation due to thinning at the Vanderford Glacier (VG) associated with ongoing retreat and thickening at the Totten Glacier (TG) associated with an intensification of the east–west snowfall gradient. The present-day catchment divide between the Totten and Vanderford glaciers is not constrained by the geology or topography but is determined by the large-scale ice sheet geometry and its long-term evolution in response to climate forcing. Furthermore, the catchment divide migrates under relatively small changes in surface elevation, leading to ice flow and basal water piracy from the Totten to the Vanderford Glacier. Our findings show that ice flow reconfigurations occur not only in regions of West Antarctica like the Siple Coast but also in the east, motivating further investigations of past, and the potential for future, ice flow reconfigurations around the whole Antarctic coastline. Modelling of ice flow and basal water piracy may require coupled ice sheet thermomechanical and subglacial hydrology models constrained by field observations of subglacial conditions. Our results have implications for ice sheet mass budget studies that integrate over catchments and the validity of the zero flow assumption when selecting sites for ice core records of past climate.</p

    Future sea level change from Antarctica's Lambert-Amery glacial system

    Get PDF
    Future global mean sea level (GMSL) change is dependent on the complex response of the Antarctic ice sheet to ongoing changes and feedbacks in the climate system. The Lambert-Amery glacial system has been observed to be stable over the recent period yet is potentially at risk of rapid grounding line retreat and ice discharge given that a significant volume of its ice is grounded below sea level, making its future contribution to GMSL uncertain. Using a regional ice sheet model of the Lambert-Amery system, we find that under a range of future warming and extreme scenarios, the simulated grounding line remains stable and does not trigger rapid mass loss from grounding line retreat. This allows for increased future accumulation to exceed the mass loss from ice dynamical changes. We suggest that the Lambert-Amery glacial system will remain stable or gain ice mass and mitigate a portion of potential future sea level rise over the next 500 years, with a range of +3.6 to −117.5 mm GMSL equivalent

    Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries

    Get PDF
    The grounded ice in the Totten and Dalton glaciers is an essential component of the buttressing for the marine-based Aurora basin, and hence their stability is important to the future rate of mass loss from East Antarctica. Totten and Vanderford glaciers are joined by a deep east-west running subglacial trench between the continental ice sheet and Law Dome, while a shallower trench links the Totten and Dalton glaciers. All three glaciers flow into the ocean close to the Antarctic circle and experience ocean-driven ice shelf melt rates comparable with the Amundsen Sea Embayment. We investigate this combination of trenches and ice shelves with the BISICLES adaptive mesh ice-sheet model and ocean-forcing melt rates derived from two global climate models. We find that ice shelf ablation at a rate comparable with the present day is sufficient to cause widespread grounding line retreat in an east-west direction across Totten and Dalton glaciers, with projected future warming causing faster retreat. Meanwhile, southward retreat is limited by the shallower ocean facing slopes between the coast and the bulk of the Aurora sub-glacial trench. However the two climate models produce completely different future ice shelf basal melt rates in this region: HadCM3 drives increasing sub-ice shelf melting to ~2150, while ECHAM5 shows little or no increase in sub-ice shelf melting under the two greenhouse gas forcing scenarios

    Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4

    Get PDF
    An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore

    Controls of the basal mass balance of floating ice shelves

    No full text
    Models of the circulation beneath ice shelves draw on knowledge gained from observations of the turbulent boundary layer beneath sea ice [1] to parameterise the thermodynamic interaction between ice-shelf and ocean [2]. These parameterisations are commonly transferred to the sub-ice-shelf boundary layer in regions of melting [3], but are limited by uncertainty in the value of the friction coefficient and representations of the heat flux into the ice shelf and are wholly unsuitable when the nature of the ice-ocean interface is different [4], as a result of frazil formation in the super cooled waters. This paper will present an overview of the commonly used parameterisations and highlight where uncertainties remain

    Simulated dynamic regrounding during marine ice sheet retreat

    No full text
    Marine-terminating ice sheets are of interest due to their potential instability, making them vulnerable to rapid retreat. Modelling the evolution of glaciers and ice streams in such regions is key to understanding their possible contribution to sea level rise. The friction caused by the sliding of ice over bedrock and the resultant shear stress are important factors in determining the velocity of sliding ice. Many models use simple power-law expressions for the relationship between the basal shear stress and ice velocity or introduce an effective-pressure dependence into the sliding relation in an ad hoc manner. Sliding relations based on water-filled subglacial cavities are more physically motivated, with the overburden pressure of the ice included. Here we show that using a cavitation-based sliding relation allows for the temporary regrounding of an ice shelf at a point downstream of the main grounding line of a marine ice sheet undergoing retreat across a retrograde bedrock slope. This suggests that the choice of sliding relation is especially important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.</p
    corecore