315 research outputs found

    Master-equations for the study of decoherence

    Full text link
    Different structures of master-equation used for the description of decoherence of a microsystem interacting through collisions with a surrounding environment are considered and compared. These results are connected to the general expression of the generator of a quantum dynamical semigroup in presence of translation invariance recently found by Holevo.Comment: 10 pages, latex, no figures, to appear in Int. J. Theor. Phy

    Quantum dissipative systems from theory of continuous measurements

    Get PDF
    We apply the restricted-path-integral (RPI) theory of non-minimally disturbing continuous measurements for correct description of frictional Brownian motion. The resulting master equation is automatically of the Lindblad form, so that the difficulties typical of other approaches do not exist. In the special case of harmonic oscillator the known familiar master equation describing its frictionally driven Brownian motion is obtained. A thermal reservoir as a measuring environment is considered.Comment: 10 pages in LATE

    Quality of a Which-Way Detector

    Full text link
    We introduce a measure Q of the "quality" of a quantum which-way detector, which characterizes its intrinsic ability to extract which-way information in an asymmetric two-way interferometer. The "quality" Q allows one to separate the contribution to the distinguishability of the ways arising from the quantum properties of the detector from the contribution stemming from a-priori which-way knowledge available to the experimenter, which can be quantified by a predictability parameter P. We provide an inequality relating these two sources of which-way information to the value of the fringe visibility displayed by the interferometer. We show that this inequality is an expression of duality, allowing one to trace the loss of coherence to the two reservoirs of which-way information represented by Q and P. Finally, we illustrate the formalism with the use of a quantum logic gate: the Symmetric Quanton-Detecton System (SQDS). The SQDS can be regarded as two qubits trying to acquire which way information about each other. The SQDS will provide an illustrating example of the reciprocal effects induced by duality between system and which-way detector.Comment: 10 pages, 5 figure

    Decoherence in a Talbot Lau interferometer: the influence of molecular scattering

    Full text link
    We study the interference of C70 fullerenes in a Talbot-Lau interferometer with a large separation between the diffraction gratings. This permits the observation of recurrences of the interference contrast both as a function of the de Broglie wavelength and in dependence of the interaction with background gases. We observe an exponential decrease of the fringe visibility with increasing background pressure and find good quantitative agreement with the predictions of decoherence theory. From this we extrapolate the limits of matter wave interferometry and conclude that the influence of collisional decoherence may be well under control in future experiments with proteins and even larger objects.Comment: 8 pages, 5 figure

    On the Asymptotic Dynamics of a Quantum System Composed by Heavy and Light Particles

    Full text link
    We consider a non relativistic quantum system consisting of KK heavy and NN light particles in dimension three, where each heavy particle interacts with the light ones via a two-body potential αV\alpha V. No interaction is assumed among particles of the same kind. Choosing an initial state in a product form and assuming α\alpha sufficiently small we characterize the asymptotic dynamics of the system in the limit of small mass ratio, with an explicit control of the error. In the case K=1 the result is extended to arbitrary α\alpha. The proof relies on a perturbative analysis and exploits a generalized version of the standard dispersive estimates for the Schr\"{o}dinger group. Exploiting the asymptotic formula, it is also outlined an application to the problem of the decoherence effect produced on a heavy particle by the interaction with the light ones.Comment: 38 page

    Signatures of non-locality in the first-order coherence of the scattered light

    Get PDF
    The spatial coherence of an atomic wavepacket can be detected in the scattered photons, even when the center-of-mass motion is in the quantum coherent superposition of two distant, non-overlapping wave packets. Spatial coherence manifests itself in the power spectrum of the emitted photons, whose spectral components can exhibit interference fringes as a function of the emission angle. The contrast and the phase of this interference pattern provide information about the quantum state of the center of mass of the scattering atom.Comment: 5 pages, one figure, submitted to Laser Physics, special issue in memory of Herbert Walthe

    Two Derivations of the Master Equation of Quantum Brownian Motion

    Get PDF
    Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. This aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the ``preferred basis'' for decoherence in this model.Comment: 19 pages, RevTe

    Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States

    Full text link
    As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρss\rho_{ss}, is more natural. In the preceding paper we concentrated upon whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ\chi of the bosons in the laser mode, and the excess phase noise ν\nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0\nu=\chi=0), the most robust states are coherent states. As the phase noise ν\nu or phase dispersion χ\chi is increased, the most robust states become increasingly amplitude-squeezed. We find scaling laws for these states. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR states having a well-defined coherent amplitude. This lends support to the idea that robust PR ensembles are the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as Part II of a two-part paper. The original version of quant-ph/9906125 is shortly to be replaced by a new version which is Part I of the two-part paper. This paper (Part II) also contains some material from the original version of quant-ph/990612

    Diffusive limit for a quantum linear Boltzmann dynamics

    Full text link
    In this article, I study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model I begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the gas particle scattering is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix that evolves according to a translation-covariant Lindblad equation. The main result is a proof that the particle's position distribution converges to a Gaussian under diffusive rescaling.Comment: 51 pages. I have restructured Sections 2-4 from the previous version and corrected an error in the proof of Proposition 7.
    corecore