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Signatures of non-locality in the first-order coherence of the scattered light
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The spatial coherence of an atomic wavepacket can be detected in the scattered photons, even
when the center-of-mass motion is in the quantum coherent superposition of two distant, non-
overlapping wave packets. Spatial coherence manifests itself in the power spectrum of the emitted
photons, whose spectral components can exhibit interference fringes as a function of the emission an-
gle. The contrast and the phase of this interference pattern provide information about the quantum

state of the center of mass of the scattering atom.

I. INTRODUCTION

Non-locality is a quantum mechanical property, which
has no classical counterpart. Its disappearance in the
classical world is related to the interaction with the sur-
rounding environment, which in several cases can be iden-
tified with the electromagnetic field [1]. In fact, photon
scattering may have the same effect as a projective mea-
surement of the position of the system inducing the effec-
tive collapse of the quantum state into a position eigen-
state, thus destroying spatial coherence [2]. Nevertheless,
one can identify other physical situations where photon
scattering enforces spatial coherence. Laser cooling is a
suggestive example, where quantum states of the atomic
center—of-mass motion are prepared at the steady state
of a process based on photon scattering, achieving coher-
ence lengths which can exceed the laser wavelength |3].
The emitted photons carry the information about the
atomic state, whose dynamics can be characterized, for
instance, in the correlation functions of the light [4, 15].
This observation leads to the natural expectation that
non—locality can be measured by means of photon scat-
tering. Even if in general the photons will destroy spatial
coherence, a quantum scatterer will imprint features of
its state in the photons emitted during the transient dy-
namics.

In this article we analyze light scattering by a parti-
cle prepared in the ground state of a double—well poten-
tial, and study the first—order coherence properties of the
scattered photons as a function of the distance between
the wells and of the size of the atomic wave packet, when
the atomic transition is driven by a weak laser pulse. The
setup is sketched in Fig.[I] and is reminescent to a Young
(double-slit) interference experiment. However, the slit
is here a single atom, which is prepared in a coherent
superposition of two locations. We show that in general
non—locality can be measured when the particle can tun-
nel between the two wells, and it manifests itself in the
spatial periodic modulation of the elastic peak and of the
Stokes and anti-Stokes signal. Moreover, we predict that
in certain situations it is possible to detect the phase of
the quantum superposition between two spatially distant
wave-packets. These results are discussed in connection

to recent theoretical works, which studied matter wave
scattering by a quantum object |6, 7].

FIG. 1: An atom is confined by double—well potential and
is driven by a laser. The intensity of the scattered light is
measured in the far field by a detector which is sensitive to
intensity gradients over the emission angle ®. The spectral
components of the resonance fluorescence, scattered by the
atom in the ground state of the potential, exhibit interfer-
ence fringes as a function of ®, whose phase and contrast are
determined by the coherence properties of the atomic wave
packet.

II. COHERENCE OF LIGHT FROM A
QUANTUM SCATTERER

We consider an atom of mass M, which is prepared in
the stable electronic state |¢g) and whose center-of-mass
is confined by a double-well potential V;(x). The center
of mass is in a stable state |¢), eigenstate of the free
Hamiltonian
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where x,p are position and momentum of the atom.
State |¢) is described by the superposition of the ground
states of each wells |¢4),

[0) = A (cos Blup_) + e sin s ) (2)

where 0, ¢ are the azimuthal and polar angles and N
gives the proper normalization. The distance between
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the wells centers is d = |d|, and the potential of each well
is approximated by two harmonic oscillators at frequency
v and ground-state wave packets

e~ (xFd/2)?/(4aj)
e = 3
(xlis) = 3)
with ag = y/fi/2Mv size of ground state of each oscilla-
tor. A laser pulse, centered at frequency wy couples to
the dipole transition |g) — |e) at frequency wp, and the
corresponding dynamics is described by the term

W, = hQ / dwf(w) (aTe*iW*kW'x) + H.c.) (4)

with o = |g){e| and o its adjoint, f(w) is the normalized
spectral distribution over the frequencies, centered in wy,
and with width Aw, k(w) the wave vector at frequency
w, and ( is the Rabi frequency at frequency wy. The
excited state couples to states |g) and |¢g’) with strength
gk and g, emitting a photon into the mode wx and wy,
with wavevector k and k', respectively. The scattered
photons are collected in the far field by a detector, which
is sensitive to the gradient of the scattered intensity over
the angle of emission ® and to the frequency w, hence
to the wavevector k. In the far field the spherical waves
of the scattered fields are well approximated by plane
waves and the scattering cross section can be put in di-
rect correspondence with the intensity measured at the
detector [8]. We thus evaluate the scattering rate Ry of
photons with wave vector k, and thus into the solid an-
gle defined by the direction of k, and correspondingly the
scattering rate Rj. These can be measured separately,
for instance by using a polarizing filter before the detec-
tor.

Let us consider the rate of photon scattering along the
transition |g) — |e). The scattering rate over a time T is
Ry = Px/T, where P = TgiQ? [dw [ dw/ f(w)f(w)A
is the probability for a photon of being emitted in the
mode with wave vector k, and

A = _/ dT/ dT / dT/ dT/el wo— wk)‘r —i(wo—w)7’

—1(w0 wi)T 1(w0 w)T 7_) (5)

where the initial state is the atom in |g,v), Eq. @),
and the electromagnetic field in the vacuum. In writing
Eq. () we have introduced W = (¢|UTU|4)) with

U= 1H( )‘r/ﬁ —ik-x —1H(EL) (r—7 )/ﬁ ik Xq —iHY 7' /R

(6)

and U = Ul:—#r—7, where Hr(nec)C is the Hamiltonian
for the atomic center of mass in state |e). The rate of
Raman scattering, R}, is analogously defined, where we

assume that the Hamiltonian of the final states is HIS?C'Q =

p?/2M, namely the atom propagates freely. This situa-
tion may be realized with magnetic traps, where |g) is a
weak—field seeker and |g’) is a state of the hyperfine mul-
tiplet with zero magnetic moment [9]. The dependence
on the dipole pattern of emission D(®) in the solid an-
gle @ enters in the rates through the factor g oc YD(®),
with « linewidth of state |e). In the far field we neglect
the variation of this factor over the angle.

Substituting the explicit form of |¢) into W, one can
write the transition amplitude as the sum of four contri-
butions,

W = N2 [sin® 0 [UTU|¢04) + cos® 0(y— |UTU[4p-) (7)
+sinf cost (¢ (i [UTU[Y-) + Py [UTU |4 ))]

where the last two terms are due to the non-local prop-
erties of the initial state. Clearly, the contribution of
the latter is maximal with respect to 6 when § = /4,
i.e., when left and right states are initially equally pop-
ulated. We thus restrict to this case, and identify sit-
uations where these terms do not vanish, allowing to
observe features due to the non-local properties of the
atomic wave packet in the scattered light.

In the following we evalute scattering by an atom
driven by a weak laser pulse, when the pulse duration
is such that one can neglect the width Aw about the
mean value wy. We consider the case in which the laser
is far-off resonance from the dipole transition |g) — |e),
such that state |e) is practically empty. In this regime
we can neglect the propagator in the excited state in
Eq. (@), as one is on the flat tail of the Lorentz curve
of the atomic resonance. We focus on the evaluation of
the rates of Rayleigh scattering, when the final internal
state of the atom is equal to the initial state |g), and
of Raman scattering, when the atom is in the state |g’)
after scattering one photon. We note that for large laser
detuning and short interaction times we can approximate
U(r,7") =~ U(0,0) in Eq. (@), and W = 1: The scattering
rate is the same as the atom was a point-like scatterer.
In fact, for short interaction times the motion is essen-
tially classical. We thus focus on long interaction times,
so to be able to resolve the spectral components of the
resonance fluorescence.

A. Rayleigh scattering

We now evaluate the rate of Rayleigh scattering Ry
when the atom has been prepared in the symmetric state
of the double-well potential, and consider the photons
which are elastically scattered and inelastically scattered
to the antisymmetric state. Be dv the frequency split-
ting between the two states. From Eq. (@), term W is
explicitly evaluated using the relation e!(kt—%)%|y ) =
|3+ )etilke—k)-d/4 where | 34) is a coherent state with am-
plitude 81 = +d/4ap+iag(kr, —k). With these relations,



1+ 672

where A = wr, —wgy, Ak = kg, —k is the difference between
the wavevectors of the incoming and outcoming photons,
5T (w) is the diffraction function [10], and

€ — efd2/8a[2) (9)

is the overlap between the two wavepackets. The finite
width Aw of the incident laser pulse can be neglected for
Aw < 2mce/d. Moreover, if Aw < dv, then Ry x A.
This result shows that the elastic peak, at wx = wp,
and the Stokes sideband, at wy = wy, — dv exhibit inter-
ference fringes on the screen as a function of the emis-
sion angle, which are in opposition of phase and have
periodicity determined by the distance d between the
wells. When the antisymmetric state is initially occupied,
one observes the signal at the anti-Stokes frequency, at
wk = Wy, + dv, which oscillates in phase with the Stokes
sideband. These sinusoidal signals have Gaussian enve-
lope with width 1/ag, thus determined by the size of the
wave packets localized at each well. Hence, the number
of observed fringes is small, since ideally d ~ ag. In ab-
sence of a spectral filter, resolving the splitting between
the doublet, the scattered intensity still depends on the
solid angle, with a visibility determined by €, which ap-
proaches unity as the spatial overlap between the two
wave packets increases.

In a time-picture, the spectral resolution of elastic and
Stokes components corresponds to selecting interaction
times T which are larger than the tunnelling time 1/dv,
such that during the interaction with the photon the
atom tunnels between the wells. Hence, the system is
analogous to a Young’s interference setup with one sin-
gle slit, which is in a coherent superposition of two spatial
locations. Remarkably, Eq. (8) also predicts an interfer-
ence signal when the distance between the wells is very
large, ¢ — 0, and the tunneling rate thus vanishes, pro-
vided that elastic and Stokes sideband are resolved in
the spectrum of resonance fluorescence. However, in this
regime the needed spectral resolution scales as dv, and
thus is extremely small, requiring integration over diverg-

2
1 (cos (#) + e> ST (wy —wr) + 1—12 sin? <#) 6T (wye — wr, + 0v)

(8)

ing time intervals T'.

Equation (8) takes into account the finite size of the
atomic wave packet and the mechanical effect of the scat-
tered photon on the atom. This result is the photonic
counterpart of the scattering rate for matter waves by
a quantum object derived in [, [7]. The scattering rate
in 6], which was obtained for a point-like scatterer, is
recovered taking e — 0. In Ref. [7] the interference pat-
tern is explained in terms of entanglement swapping of
the state of the scatterer with the state of the scattered
matter wave. This interpretation applies also to photon
scattering: the emerging photon is entangled with the
scattering atom [11, [12], and interference between the
paths of photon scattering through each well is hence
possible when the two states, |[¢4) and |¢_), have finite
overlap. The interaction with the atom prepared in a
superposition of two orthogonal wave-packets imprints a
which-way information on the photon [13], and one can
put the finite overlap between the wave-packets in direct
connection with the fringe visibility at the screen [14].

B. Raman scattering

Is it then possible to detect by photon scattering
whether the atom is in a non-local state, if there is no
spatial overlap between the two wave packets in which
the atom has been prepared? Let us assume the atom is
initially in state |g, ) when |d| > ag, so that the tun-
neling rate vanishes, ¢ — 0. This state can be prepared,
for instance, via adiabatic manipulation of the center-of-
mass wave packet, as described in [15]. We assume now
that the internal state is coupled by Raman scattering
to the internal state |¢’), which is not trapped. In this
case, a photon of wave vector k’ is emitted in a spon-
taneous Raman process, which is detected at the screen.
Accordingly, the atom in state |¢’) propagates freely with
momentum A(ky, — k). The corresponding signal at the
detector is given by

A x éeﬁmwaé [1 4 sin 26 cos(Ak - d + ¢)] 67 (w, — wi + dwy + hAK?/2M) (10)

where Ak = ki, — k’ and dwy accounts for the fre-
quency difference between initial and final state. For
Aw < 2mc/d,hAk*/2M, then R A’ and the intensity

at the detector exhibits an interference signal, provided
that the frequency shift due to photon recoil is spectrally
resolved. This signal has periodicity determined by d,



it has maximum contrast when the occupation probabil-
ity of the two wells is equal, § = 7 /4, and it depends
on the phase ¢ of the initial state, Eq. (2). The situa-
tion here considered is similar to the experimental setup
realized in Ref. [16], which was used for detecting the
phase between two Bose-Einstein condensates by mea-
suring interference in the flux of atoms outcoupled by
stimulated Bragg scattering. Equation (I0) shows that
interference is already present at the single-particle level.
As observed in [16], this effect is found whenever the final
state has finite overlap with both initial wave packets. In
analogy with interferometry, the final state is a quantum
eraser, which projects the two orthogonal wave packets
into the same state, thus restoring interference [17]. The
detection efficiency of the scattered photons in this kind
of experiment can be improved using stimulated Raman
scattering or enhancing the rate of photon emission by
means of a resonator, in a setup like the one discussed
in Ref. [18]. We remark that a signal similar to the one
in Eq. (I0) is found also in the photons scattered by an
atomic dipole, when the atomic wave packet in the ex-
cited state |e) has finite overlap with both wells and the
vibrational excitations of |e) are spectrally resolved. In
this case, propagation in the excited state leads to an
overlap between the two initial wave packets and acts as
a quantum eraser. Hence, inelastic scattering restores the
visibility of the fringes. This is a remarkably different be-
haviour from the one studied in [&], where the coherence
of light scattered by two atoms is destroyed by saturation
effects.

III. CONCLUSIONS

Using simple, but experimentally plausible models we
have shown that the features associated with non-locality
can be measured in the scattered light. The interaction
of a photon with an atom in a double-well potential can
be thought of as a photon interferometer, and coherence
between the two interaction paths appear through spatial
modulation in the signals of the spectrum of resonance
fluorescence. This setup can be generalized to the case
of quantum transport of an atom in a periodic potential,

such as an optical lattice: Photon scattering will act as
a multipath interferometer, providing information on the
coherence properties of atomic motion. Such setup could
be used in order to study the coherence length of a reser-
voir coupling to the atom, which could be, for instance,
an atomic gas [19].

These results give a further example of how the spatial
coherence of matter waves appear in the coherence
properties of the scattered light, and may be of rele-
vance for the realization of quantum light sources |18, 20].
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