181 research outputs found

    Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Get PDF
    BACKGROUND: Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. METHODOLOGY/PRINCIPLE FINDINGS: EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). CONCLUSIONS/SIGNIFICANCE: Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma

    Primary bilateral adrenal B-cell lymphoma associated with EBV and JCV infection

    Get PDF
    Primary lymphoma of the adrenal gland is a rare and highly aggressive disease, with only a few reports in the literature. The pathogenesis is unknown, but detection of Epstein Barr virus (EBV) genome sequences and gene expression in some cases of primary adrenal lymphomas suggested the virus might be a causative agent of the malignancy. While investigating the presence of genome sequences of oncogenic viruses in a large series of adrenal tumors, both EBV and JC polyomavirus (JCV) DNA sequences were detected in a diffuse large primary bilateral B-cell non-Hodgkin lymphoma of the adrenal gland, which was diagnosed only at postmortem examination in a 77 year-old woman with incidentally discovered adrenal masses and primary adrenal insufficiency. The presence of both EBV and JCV genome sequences suggests the relevance of EBV and JCV coinfection in the pathogenesis of this rare form of B-cell lymphoma

    Corticosteroids in chronic inflammatory demyelinating polyneuropathy : a retrospective, multicentre study, comparing efficacy and safety of daily prednisolone, pulsed dexamethasone, and pulsed intravenous methylprednisolone

    Get PDF
    Background: Chronic inflammatory demyelinating polyneuropathy (CIDP) can be treated with corticosteroids or intravenous immunoglobulins. Various corticosteroid regimens are currently used in CIDP, but it is unknown whether they are equally efficacious. In this retrospective study, we compared efficacy and safety of three corticosteroid regimens in CIDP patients. Methods: We included treatment na\uefve patients that fulfilled the EFNS/PNS criteria for CIDP. Patients were treated with corticosteroids according to the local protocol of three CIDP expertise centres. Corticosteroid regimens consisted of daily oral prednisolone, pulsed oral dexamethasone, or pulsed intravenous methylprednisolone. Outcomes were number of responders to treatment, remission rate of treatment responders, overall probability of 5-year remission, and the occurrence of adverse events. Results: A total of 125 patients were included. Sixty-seven (54%) patients received daily prednisone or prednisolone, 37 (30%) pulsed dexamethasone, and 21 (17%) pulsed intravenous methylprednisolone. Overall, 60% (95% CI 51\u201369%) responded to corticosteroids, with no significant difference between the three treatment regimens (p = 0.56). From the 75 responders, 61% (95% CI 50\u201373%) remained in remission, during a median follow-up of 55\ua0months (range 1\u2013197\ua0months). The probability of responders reaching 5-year remission was 55% (95% Cl 44\u201370%), with no difference between the three groups. Adverse events leading to a change in treatment occurred in ten patients (8%). Two patients had a serious adverse event. Conclusion: Corticosteroids lead to improvement in 60% of patients and to remission in 61% of treatment responders. There were no differences between treatment modalities in terms of efficacy and safety

    Frequency and time to relapse after discontinuing 6-month therapy with IVIg or pulsed methylprednisolone in CIDP

    Get PDF
    Background: We reported that 6-month therapy with intravenous immunoglobulin (IVIg) was more frequently effective or tolerated than intravenous methylprednisolone (IVMP) in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). We now retrospectively compared the proportion of patients who eventually worsened after discontinuing therapy and the median time to clinical worsening. Methods: By March 2013, data were available from 41 of the 45 patients completing the trial with a median follow-up after therapy discontinuation of 42 months (range 1-60). Three patients withdrew during the original study and one failed to respond to either of the therapies. No patient received a diagnosis alternative to CIDP during the follow-up. Results: Twenty-eight of the 32 patients treated with IVIg (as primary or secondary therapy after failing to respond to IVMP) improved after therapy (87.5%) as compared with 13 of the 24 patients treated with IVMP as primary or secondary therapy (54.2%). After a median follow-up of 42 months (range 1-57), 24 out of 28 patients responsive to IVIg (85.7%) worsened after therapy discontinuation. The same occurred in 10 out of 13 patients (76.9%) responsive to IVMP (p=0.659) after a median follow-up of 43 months (range 7-60). Worsening occurred 1-24 months (median 4.5) after IVIg discontinuation and 1-31 months (median 14) after IVMP discontinuation (p=0.0126). Conclusions: A similarly high proportion of patients treated with IVIg or IVMP eventually relapse after therapy discontinuation but the median time to relapse was significantly longer after IVMP than IVIg. This difference may help to balance the more frequent response to IVIg than to IVMP in patients with CIDP

    Down-regulation of endothelial TLR4 signalling after apo A-I gene transfer contributes to improved survival in an experimental model of lipopolysaccharide-induced inflammation

    Get PDF
    The protective effects of high-density lipoprotein (HDL) under lipopolysaccharide (LPS) conditions have been well documented. Here, we investigated whether an effect of HDL on Toll-like receptor 4 (TLR4) expression and signalling may contribute to its endothelial-protective effects and to improved survival in a mouse model of LPS-induced inflammation and lethality. HDL cholesterol increased 1.7-fold (p < 0.005) and lung endothelial TLR4 expression decreased 8.4-fold (p < 0.005) 2Β weeks after apolipoprotein (apo) A-I gene transfer. Following LPS administration in apo A-I gene transfer mice, lung TLR4 and lung MyD88 mRNA expression, reflecting TLR4 signalling, were 3.0-fold (p < 0.05) and 2.1-fold (p < 0.05) lower, respectively, than in LPS control mice. Concomitantly, LPS-induced lung neutrophil infiltration, lung oedema and mortality were significantly attenuated following apo A–I transfer. In vitro, supplementation of HDL or apo A–I to human microvascular endothelial cells-1 24Β h before LPS administration reduced TLR4 expression, as assessed by fluorescent-activated cell sorting, and decreased the LPS-induced MyD88 mRNA expression and NF-ΞΊB activity, independently of LPS binding. In conclusion, HDL reduces TLR4 expression and signalling in endothelial cells, which may contribute significantly to the protective effects of HDL in LPS-induced inflammation and lethality

    Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.</p> <p>Methods</p> <p>Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured <it>in vivo </it>with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed <it>ex vivo </it>with fluorescence imaging.</p> <p>Results</p> <p>We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells.</p> <p>Conclusion</p> <p>The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.</p

    Visualizing the Distribution of Synapses from Individual Neurons in the Mouse Brain

    Get PDF
    BACKGROUND:Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons. METHODS AND FINDINGS:In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs. CONCLUSIONS:The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits
    • …
    corecore