Alterations of Synaptic Mechanisms and Excessive Glutamate Release in the Spinal Cord of SOD1^{G93A} Mice.

<u>T. Bonifacino¹</u>, M. Milanese¹, L. Musazzi², E. Gallia¹, L. Cattaneo¹, G. Treccani², F. Onofri³, M. Popoli² and G. Bonanno¹

¹Dept. of Pharmacy and Center of Excellence for Biomedical Research, Univ. of Genova, Italy; ²Dept. of Pharmacological and Biomolecular Sciences, University of Milan, Italy; ³Dept. of Experimental Medicine, Unit of Physiology, University of Genoa, Italy

INTRODUCTION: Glutamate-mediated excitotoxicity plays a pivotal role in the motoneuron degeneration in amyotrophic lateral sclerosis (ALS). Reduced astrocytic uptake and abnormal glutamate release play a pivotal role for excessive extracellular glutamate. We showed that both the spontaneous and the stimulus-evoked exocytotic release of glutamate were increased in pre-symptomatic and late-symptomatic SOD1 ^{G93A} mouse spinal cord.

AIMS: The aim of this research was to investigate the synaptic mechanisms supporting the excessive glutamate exocytosis in ALS.

METHODS: Synaptosomes were purified from SOD1 and SOD1^{G93A} mouse spinal cord and used for glutamate release, western blots, confocal microscopy and intracellular Ca²⁺ concentration experiments.

RESULTS: Measuring the expression/activation state of a large number of presynaptic proteins involved in neurotransmitter release, we showed that only few of them were modified and that synaptotagmin and actin resulted over-expressed both in pre-symptomatic and late-symptomatic SOD1^{G93A} mice. Moreover, increased presynaptic Ca²⁺ levels and over-activation of calcium/calmodulin-dependent kinase-II and ERK/MAP kinases supported the hyper-phosphorylation of synapsin-I. Release experiments demonstrated that the excessive glutamate exocytosis was sustained by the increase of the readily releasable pool of vesicles. In support of the role of Synapsin-I in the above phosphorylation cascade, the abnormal glutamate release in SOD1^{G93A} mice was prevented by blocking synapsin-I phosphorylation by specific antibodies.

CONCLUSION: Our results highlight that abnormal glutamate exocytosis, accompanied by marked changes of precise pre-synaptic molecular mechanisms, is present in pre-symptomatic and late-symptomatic SOD1^{G93A} mice. These mechanisms may support excessive glutamate release and play a role in the disease development.