643 research outputs found

    Listening to children voices in early stages of new product development through co-creation – Creative focus group and online platform

    Get PDF
    To tackle current nutritional issues like obesity, it could be valuable to involve children in the development of healthy food products that they will actively chose and enjoy. The aims of the present exploratory study were (i) to assess a methodology for early-stage idea generation through co-creation, for the development of healthy snacks with pre-adolescents, and (ii) to compare two settings, creative focus groups (CFG) and an online community (ONL). Three steps were defined to allow the gradual exploration of the topic and mutual learning throughout the process: (1) Show &Tell: photo taking and -elicitation to understand what children ate; (2) Reflect: a sorting task of the pictures to discuss and reflect on snacking practices (3) Create: an idea generation step, in which a newspaper article describing an idea for a new healthy snack was created. To increase engagement and creativity, gamification strategies were used. Our results demonstrated that children (preadolescents) can create new food product ideas with the proposed process, using enabling and creative techniques. In the CFG the trained moderator could steer the group to the co-creation goal. The setting facilitated teamwork and group learning, collaborative ideas considering preferences of peers and produced a few detailed and mostly actionable ideas. In the ONL less control over the process was possible. The setting produced many ideas varying in the degree of detail and actionability focusing on individual preferences. The feedback and observations from our study, particularly in the CFG setting, implied that the creative approach was highly engaging for participants. Further research is necessary to assess the potential of initial ideas developed by pre-adolescents.publishedVersio

    P2-017: DNA Methylation Changes in Developing Lung Adenocarcinoma

    Get PDF

    Low-energy Compton scattering on the nucleon and sum rules

    Get PDF
    The Gerasimov-Drell-Hearn and Baldin-Lapidus sum rules are evaluated in the dressed K-matrix model for photon-induced reactions on the nucleon. For the first time the sum α+β\alpha+\beta of the electric and magnetic polarisabilities and the forward spin polarisability γ0\gamma_0 are explicitly calculated in two alternative ways -- from the sum rules and from the low-energy expansion of the real Compton scattering amplitude -- within the {\em same} framework. The two methods yield compatible values for α+β\alpha+\beta but differ somewhat for γ0\gamma_0. Consistency between the two ways of determining the polarisabilities is a measure of the extent to which basic symmetries of the model are obeyed.Comment: 9 pages, 4 figures, using REVTeX. More concise version, results unchanged. To appear in Phys. Rev.

    Cerebellar infarction requiring surgical decompression in patient with COVID 19 pathological analysis and brief review

    Get PDF
    © 2020 The Authors Background: This report and literature review describes a case of a COVID-19 patient who suffered a cerebellar stroke requiring neurosurgical decompression. This is the first reported case of a sub-occipital craniectomy with brain biopsy in a COVID-19 patient showing leptomeningeal venous intimal inflammation. Clinical description: The patient is a 48-year-old SARS-COV-2 positive male with multiple comorbidities, who presented with fevers and respiratory symptoms, and imaging consistent with multifocal pneumonia. On day 5 of admission, the patient had sudden change in mental status, increased C-Reactive Protein, ferritin and elevated Interleukin-6 levels. Head CT showed cerebral infarction from vertebral artery occlusion. Given subsequent rapid neurologic decline from cerebellar swelling and mass effect on his brainstem emergent neurosurgical intervention was performed. Brain biopsy found a vein with small organizing thrombus adjacent to focally proliferative intima with focal intimal neutrophils. Conclusion: A young man with COVID-19 and suspected immune dysregulation, complicated by a large cerebrovascular ischemic stroke secondary to vertebral artery thrombosis requiring emergent neurosurgical intervention for decompression with improved neurological outcomes. Brain biopsy was suggestive of inflammation from thrombosed vessel, and neutrophilic infiltration of cerebellar tissue

    Compton Scattering by the Proton using a Large-Acceptance Arrangement

    Full text link
    Compton scattering by the proton has been measured using the tagged-photon facility at MAMI (Mainz) and the large-acceptance arrangement LARA. The new data are interpreted in terms of dispersion theory based on the SAID-SM99K parameterization of photo-meson amplitudes. It is found that two-pion exchange in the t-channel is needed for a description of the data in the second resonance region. The data are well represented if this channel is modeled by a single pole with mass parameter m(sigma)=600 MeV. The asymptotic part of the spin dependent amplitude is found to be well represented by pi-0-exchange in the t-channel. A backward spin-polarizability of gamma(pi)=(-37.1+-0.6(stat+syst)+-3.0(model))x10^{-4}fm^4 has been determined from data of the first resonance region below 455 MeV. This value is in a good agreement with predictions of dispersion relations and chiral pertubation theory. From a subset of data between 280 and 360 MeV the resonance pion-photoproduction amplitudes were evaluated leading to a E2/M1 multipole ratio of the p-to-Delta radiative transition of EMR(340 MeV)=(-1.7+-0.4(stat+syst)+-0.2(model))%. It was found that this number is dependent on the parameterization of photo-meson amplitudes. With the MAID2K parameterization an E2/M1 multipole ratio of EMR(340 MeV)=(-2.0+-0.4(stat+syst)+-0.2(model))% is obtained

    Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The yellow fever virus, a member of the genus <it>Flavivirus</it>, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP). This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor.</p> <p>Results</p> <p>YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus.</p> <p>Conclusion</p> <p>This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow <it>in vivo </it>studies on flavivirus cell and tissue tropism as well as cellular processes related to flavivirus infection.</p

    Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model

    Get PDF
    A microscopic calculation of Compton scattering on the nucleon is presented which encompasses the lowest energies -- yielding nucleon polarizabilities -- and extends to energies of the order of 600 MeV. We have used the covariant "Dressed K-Matrix Model" obeying the symmetry properties which are appropriate in the different energy regimes. In particular, crossing symmetry, gauge invariance and unitarity are satisfied. The extent of violation of analyticity (causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published in Phys. Rev. C, more extensive comparison with data for Compton scattering, all results unchange
    • …
    corecore