18 research outputs found

    Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines

    Get PDF
    We have determined the effects of the IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on cell proliferation and cell-cycle phase distribution in human colon, pancreatic carcinoma, and glioblastoma cell lines and primary cultures. IGF-1R signaling was blocked by BMS and OSI at equivalent doses, although both inhibitors exhibited differential antiproliferative effects. In all pancreatic carcinoma cell lines tested, BMS exerted a strong antiproliferative effect, whereas OSI had a minimal effect. Similar results were obtained on glioblastoma primary cultures, where HGUE-GB-15, -16 and -17 displayed resistance to OSI effects, whereas they were inhibited in their proliferation by BMS. Differential effects of BMS and OSI were also observed in colon carcinoma cell lines. Both inhibitors also showed different effects on cell cycle phase distribution, BMS induced G2/M arrest followed by cell death, while OSI induced G1 arrest with no cell death. Both inhibitors also showed different effects on other protein kinases activities. Taken together, our results are indicative that BMS mainly acts through off-target effects exerted on other protein kinases. Given that BMS exhibits a potent antiproliferative effect, we believe that this compound could be useful for the treatment of different types of tumors independently of their IGF-1R activation status.This research was funded by a Grant from Instituto de Salud Carlos III Grant PI012/02025 co-supported by FEDER funds and PRECIPITA crowdfunding platform from Fundación Española para la Ciencia y la Tecnología (Fecyt) to M. Saceda and AMACMED (Asociación de mujeres afectadas por cáncer de mama de Elche y Comarca) and Monica Moraleda donation to M. Saceda. The Spanish Ministry of Economy and Competitiveness (MINECO, Project RTI2018-096724-B-C21) and the Generalitat Valenciana (PROMETEO/2016/006) supported the work in the Encinar laboratory

    Comparison of uniportal robotic-assisted thoracic surgery pulmonary anatomic resections with multiport robotic-assisted thoracic surgery: a multicenter study of the European experience

    Get PDF
    Background: Robotic-assisted thoracic surgery (RATS) has seen increasing interest in the last few years, with most procedures primarily being performed in the conventional multiport manner. Our team has developed a new approach that has the potential to convert surgeons from uniportal video-assisted thoracic surgery (VATS) or open surgery to robotic-assisted surgery, uniportal-RATS (U-RATS). We aimed to evaluate the outcomes of one single incision, uniportal robotic-assisted thoracic surgery (U-RATS) against standard multiport RATS (M-RATS) with regards to safety, feasibility, surgical technique, immediate oncological result, postoperative recovery, and 30-day follow-up morbidity and mortality. Methods: We performed a large retrospective multi-institutional review of our prospectively curated database, including 101 consecutive U-RATS procedures performed from September 2021 to October 2022, in the European centers that our main surgeon operates in. We compared these cases to 101 consecutive M-RATS cases done by our colleagues in Barcelona between 2019 to 2022. Results: Both patient groups were similar with respect to demographics, smoking status and tumor size, but were significantly younger in the U-RATS group [M-RATS =69 (range, 39-81) years; U-RATS =63 years (range, 19-82) years; P<0.0001]. Most patients in both operative groups underwent resection of a primary non-small cell lung cancer (NSCLC) [M-RATS 96/101 (95%); U-RATS =60/101 (59%); P<0.0001]. The main type of anatomic resection was lobectomy for the multiport group, and segmentectomy for the U-RATS group. In the M-RATS group, only one anatomical segmentectomy was performed, while the U-RATS group had twenty-four (24%) segmentectomies (P=0.0006). All M-RATS and U-RATS surgical specimens had negative resection margins (R0) and contained an equivalent median number of lymph nodes available for pathologic analysis [M-RATS =11 (range, 5-54); U-RATS =15 (range, 0-41); P=0.87]. Conversion rate to thoracotomy was zero in the U-RATS group and low in M-RATS [M-RATS =2/101 (2%); U-RATS =0/101; P=0.19]. Median operative time was also statistically different [M-RATS =150 (range, 60-300) minutes; U-RATS =136 (range, 30-308) minutes; P=0.0001]. Median length of stay was significantly lower in U-RATS group at four days [M-RATS =5 (range, 2-31) days; U-RATS =4 (range, 1-18) days; P<0.0001]. Rate of complications and 30-day mortality was low in both groups. Conclusions: U-RATS is feasible and safe for anatomic lung resections and comparable to the multiport conventional approach regarding surgical outcomes. Given the similarity of the technique to uniportal VATS, it presents the potential to convert minimally invasive thoracic surgeons to a robotic-assisted approach

    Colombian consensus recommendations for diagnosis, management and treatment of the infection by SARS-COV-2/ COVID-19 in health care facilities - Recommendations from expert´s group based and informed on evidence

    Get PDF
    La Asociación Colombiana de Infectología (ACIN) y el Instituto de Evaluación de Nuevas Tecnologías de la Salud (IETS) conformó un grupo de trabajo para desarrollar recomendaciones informadas y basadas en evidencia, por consenso de expertos para la atención, diagnóstico y manejo de casos de Covid 19. Estas guías son dirigidas al personal de salud y buscar dar recomendaciones en los ámbitos de la atención en salud de los casos de Covid-19, en el contexto nacional de Colombia

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines

    Get PDF
    We have determined the effects of the IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on cell proliferation and cell-cycle phase distribution in human colon, pancreatic carcinoma, and glioblastoma cell lines and primary cultures. IGF-1R signaling was blocked by BMS and OSI at equivalent doses, although both inhibitors exhibited differential antiproliferative effects. In all pancreatic carcinoma cell lines tested, BMS exerted a strong antiproliferative effect, whereas OSI had a minimal effect. Similar results were obtained on glioblastoma primary cultures, where HGUE-GB-15, -16 and -17 displayed resistance to OSI effects, whereas they were inhibited in their proliferation by BMS. Differential effects of BMS and OSI were also observed in colon carcinoma cell lines. Both inhibitors also showed different effects on cell cycle phase distribution, BMS induced G2/M arrest followed by cell death, while OSI induced G1 arrest with no cell death. Both inhibitors also showed different effects on other protein kinases activities. Taken together, our results are indicative that BMS mainly acts through off-target effects exerted on other protein kinases. Given that BMS exhibits a potent antiproliferative effect, we believe that this compound could be useful for the treatment of different types of tumors independently of their IGF-1R activation status.This research was funded by a Grant from Instituto de Salud Carlos III Grant PI012/02025 co-supported by FEDER funds and PRECIPITA crowdfunding platform from Fundación Española para la Ciencia y la Tecnología (Fecyt) to M. Saceda and AMACMED (Asociación de mujeres afectadas por cáncer de mama de Elche y Comarca) and Monica Moraleda donation to M. Saceda. The Spanish Ministry of Economy and Competitiveness (MINECO, Project RTI2018-096724-B-C21) and the Generalitat Valenciana (PROMETEO/2016/006) supported the work in the Encinar laboratory
    corecore