31 research outputs found

    Continuous monitoring of near-bottom mesoplankton communities in the East China Sea during a series of typhoons

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Oceanography 71 (2015): 115-124, doi:10.1007/s10872-014-0268-y.Typhoons are a common feature of summer and autumn months in the East China Sea. These events often promote phytoplankton growth in surface waters as a result of upwelling and transport of nutrients, but their effects on sub-surface waters and ecosystems are little known. Furthermore, biological studies tend to focus on phytoplankton (using chlorophyll a assays), rather than on heterotrophic zooplankton. Indeed, measurements of biological and physicochemical changes induced by the storms are difficult to perform and risky, using standard shipboard sampling techniques. Using a camera mounted on an underwater, cabled observatory system in shallow coastal waters of Okinawa, Japan, we collected the first continuous, in-situ observations of the near-bottom, mesoplankton community during a series of typhoons. An increase in diatoms and radiolarians was found during all typhoons, whereas the response of larger zooplankton groups was variable between typhoons. A bloom of Trichodesmium cyanobacteria and diatoms was seen after a series of typhoons, while the total chlorophyll a concentration remained nearly unchanged at the sampling location. These findings shed new light on short-term responses of sub-surface ecosystems during typhoons.This work was funded by the Special Framework budget, Okinawa Promotion for Education and Research Project awarded to OIST for the 2012 fiscal year.2015-12-3

    Semi-automated image analysis for the identification of bivalve larvae from a Cape Cod estuary

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 538-554, doi:10.4319/lom.2012.10.538.Machine-learning methods for identifying planktonic organisms are becoming well-established. Although similar morphologies among species make traditional image identification methods difficult for larval bivalves, species-specific shell birefringence patterns under polarized light permit identification by color and texture-based features. This approach uses cross-polarized images of bivalve larvae, extracts Gabor and color angle features from each image, and classifies images using a Support Vector Machine. We adapted this method, which was established on hatchery-reared larvae, to identify bivalve larvae from a series of field samples from a Cape Cod estuary in 2009. This method had 98% identification accuracy for four hatchery-reared species. We used a multiplex polymerase chain reaction (PCR) method to confirm field identifications and to compare accuracies to the software classifications. Image classification of larvae collected in the field had lower accuracies than both the classification of hatchery species and PCR-based identification due to error in visually classifying unknown larvae and variability in larval images from the field. A six-species field training set had the best correspondence to our visual classifications with 75% overall agreement and individual species agreements from 63% to 88%. Larval abundance estimates for a time-series of field samples showed good correspondence with visual methods after correction. Overall, this approach represents a cost- and time-saving alternative to molecular-based identifications and can produce sufficient results to address long-term abundance and transport-based questions on a species-specific level, a rarity in studies of bivalve larvae.This project was supported by an award to S. Gallager and C. Mingione Thompson from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration and a grant from Woods Hole Oceanographic Institution’s Coastal Ocean Institute

    Species-specific abundance of bivalve larvae in relation to biological and physical conditions in a Cape Cod estuary : Waquoit Bay, Massachusetts (USA)

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 469 (2012): 53-69, doi:10.3354/meps09998.Physical and biological conditions impact recruitment and adult population structure of 34 marine invertebrates by affecting early life history processes from spawning to post-settlement. We investigated how temperature, salinity and phytoplankton influenced larval abundance and larval size structure for three species of bivalves over two non-consecutive years in Waquoit Bay, MA. Abundance and size of Mercenaria mercenaria (quahog), Anomia simplex (jingle clam), and Geukensia demissa (ribbed mussel) larvae were compared between locations in the bay and with environmental conditions. Shell birefringence patterns using polarized light microscopy were used to distinguish species. Larval abundances for all three species were higher in 2009 than in 2007 and were positively correlated with temperature in both years. Differences in larval abundance and size structure between bay sites were attributed to salinity tolerances and potential source locations. Higher survival in 2009 than in 2007, as determined by number of pediveligers, was likely due to higher temperatures and greater food availability during the peak abundance months of July and August in 2009. Yearly differences in larval growth and survival can have a large impact on recruitment. Knowing the optimal periods and locations for larval abundance and survival can be useful for isolating species-specific patterns in larval dispersal and to aid resource managers in enhancing or restoring depleted populations.This research was conducted in the National Estuarine Research Reserve System under an award to S. Gallager and C. Mingione Thompson from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration

    Dynamics and energetics of trapped diurnal internal Kelvin waves around a midlatitude lsland

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2479-2498, doi:10.1175/JPO-D-16-0167.1.The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.This study was supported by JST CREST Grant Number JPRMJCR12A6.2018-04-1

    Effects of turbulence on the feeding rate of a pelagic predator : the planktonic hydroid Clytia gracilis

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 333 (2006): 159-165, doi:10.1016/j.jembe.2005.12.006.Relatively little is known about the role of turbulence in a predator - prey system where the predator is a passive, pelagic forager. The Campanulariid hydroid Clytia gracilis (Cnidaria, Hydrozoa) is unusual because it occurs as planktonic colonies and is reported to forage passively in the water column on Georges Bank, Massachusetts, USA. In this study we investigated the role of various turbulence conditions on the feeding rate of C. gracilis colonies in laboratory experiments. We found a positive relationship between turbulence velocities and feeding rates up to a turbulent energy dissipation rate of ca 1 cm2 s-3. Beyond this threshold feeding rate decreased slightly, indicating a dome-shaped relationship. Additionally, a negative relationship was found between feeding efficiency and hydroid colony size under lower turbulent velocities, but this trend was not significant under higher turbulence regimes.P. Adamík received support from the WHOI Academic Programs Office via the 2002 Summer Student Fellowship and while writing this paper from the Ministry of Education of the Czech Republic (MSM 6198959212 and MSM 153100012)

    Pump it Up workshop report

    Get PDF
    Workshop held 28-29 September 2017, Cape Cod, MAA two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances

    Running GAGs: myxoid matrix in tumor pathology revisited: What’s in it for the pathologist?

    Get PDF
    Ever since Virchow introduced the entity myxoma, abundant myxoid extracellular matrix (ECM) has been recognized in various reactive and neoplastic lesions. Nowadays, the term “myxoid” is commonly used in daily pathological practice. But what do today’s pathologists mean by it, and what does the myxoid ECM tell the pathologist? What is known about the exact composition and function of the myxoid ECM 150 years after Virchow? Here, we give an overview of the composition and constituents of the myxoid ECM as known so far and demonstrate the heterogeneity of the myxoid ECM among different tumors. We discuss the possible role of the predominant constituents of the myxoid ECM and attempt to relate them to differences in clinical behavior. Finally, we will speculate on the potential relevance of this knowledge in daily pathological practice

    Globally consistent quantitative observations of planktonic ecosystems

    Get PDF
    In this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration

    Safety and long-term immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Sierra Leone: a combined open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2 trial

    Get PDF
    Background The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. Methods The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5×1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1×108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant’s last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. Findings Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736–6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312–4383]) at 21 days after the second vaccination. Interpretation The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults

    PHYSIOLOGY OF THE WOOD BORING MOLLUSC MARTESIA CUNEIFORMIS SAY

    No full text
    Volume: 166Start Page: 167End Page: 17
    corecore