44 research outputs found

    INFLUENCE OF THE REORGANIZATION OF ENERGY INFRASTRUCTURE TO AIR POLLUTION IN THE BALTIC STATES

    Get PDF
    Prognosis of environmental quality in Baltic states related with the closure of Ignalina Nuclear Power Plant according to two electricity production scenarios was made. (Scenario 1 - closure date of Block 1 is 2005, closure date of Block 2 is 2011; Scenario 2 - closure date of Block 1 is 2005, exploitation of Block 2 will be extended at least until 2020.) We can see that in accordance with both scenarios CO2 an SO2 emission will increase every year. Although the influence of the largest air pollution sources such as Estonian/Baltic PP, Lithuanian PP Riga CHP and others remains very significant to the situation in Baltic States, new power plants will forward the rise of total emission

    Probing the structure and dynamics of molecular clusters using rotational wavepackets

    Full text link
    The chemical and physical properties of molecular clusters can heavily depend on their size, which makes them very attractive for the design of new materials with tailored properties. Deriving the structure and dynamics of clusters is therefore of major interest in science. Weakly bound clusters can be studied using conventional spectroscopic techniques, but the number of lines observed is often too small for a comprehensive structural analysis. Impulsive alignment generates rotational wavepackets, which provides simultaneous information on structure and dynamics, as has been demonstrated successfully for isolated molecules. Here, we apply this technique for the firsttime to clusters comprising of a molecule and a single helium atom. By forcing the population of high rotational levels in intense laser fields we demonstrate the generation of rich rotational line spectra for this system, establishing the highly delocalised structure and the coherence of rotational wavepacket propagation. Our findings enable studies of clusters of different sizes and complexity as well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure

    Micrometer-thickness liquid sheet jets flowing in vacuum

    Get PDF
    Thin liquid sheet jet flows in vacuum provide a new platform for performing experiments in the liquid phase, for example X-ray spectroscopy. Micrometer thickness, high stability, and optical flatness are the key characteristics required for successful exploitation of these targets. A novel strategy for generating sheet jets in vacuum is presented in this article. Precision nozzles were designed and fabricated using high resolution (0.2 μm) 2-photon 3D printing and generated 1.49 ±± 0.04 μm thickness, stable, and <λλ/20-flat jets in isopropanol under normal atmosphere and under vacuum at 5 ×× 10−1 mbar. The thin sheet technology also holds great promise for advancing the fields of high harmonic generation in liquids, laser acceleration of ions as well as other fields requiring precision and high repetition rate targets

    Carrying out a multi-model integrated assessment of European energy transition pathways: Challenges and benefits

    Get PDF
    With the publication of the European Green Deal, the European Union has committed to reaching carbon neutrality by 2050. The envisaged reductions of direct greenhouse gases emissions are seen as technically feasible, but if a wrong path is pursued, significant unintended impacts across borders, sectors, societies and ecosystems may follow. Without the insights gained from an impact assessment framework reaching beyond the techno-economic perspective, the pursuit of direct emission reductions may lead to counterproductive outcomes in the long run. We discuss the opportunities and challenges related to the creation and use of an integrated assessment framework built to inform the European Commission on the path to decarbonisation. The framework is peculiar in that it goes beyond existing ones in its scope, depth and cross-scale coverage, by use of numerous specialised models and case studies. We find challenges of consistency that can be overcome by linking modelling tools iteratively in some cases, harmonising modelling assumptions in others, comparing model outputs in others. We find the highest added value of the framework in additional insights it provides on the technical feasibility of decarbonisation pathways, on vulnerability aspects and on unintended environmental and health impacts on national and sub-national scale.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Photon coincidences in spontaneous parametric down-converted radiation excited by a blue LED in bulk LiIO3 crystal.

    No full text
    We report on experimental and numerical investigation of two-photon coincidence properties of the parametric spontaneous down-converted field excited by a high brightness blue LED in bulk lithium iodate crystal. Ratio of up to 11.5% of coincidence, which cannot be attributed to classical coincidences, to single photon counts was recorded at the outputs of multimode fibers, demonstrating well-preserved biphoton property. This result, combined with practically useful power of the source, suggests its possible application for a class of quantum experiments

    Forest bioenergy feedstock in Lithuania – Renewable energy goals and the use of forest resources

    No full text
    Demands on forest bioenergy feedstock are expected to increase in many countries due to climate change mitigation. However, sustainable use of forest biomass resources can be ensured only if local and landscape conditions are taken into account, linking energy use to its resource base. The aim of this study was to analyse the forest biomass potential for Lithuania's energy pathways, while comparing the projected demand of forest bioenergy feedstock with resource projections. This was performed using the Landscape simulation and Ecological Assessment (LEcA) tool and the energy model MESSAGE. Biomass demand can be met up to 2050, after which demands under a Biomass Low pathway can still be met by the domestic forest resource if other wood uses are reduced, while Biomass High leads to a biomass deficit regarding domestic forest resources. Information exchange between the energy model and the LEcA tool enables an integrated sustainability assessment, and may contribute to a sustainable and efficient use of forest as a bioenergy feedstock resource. Keywords: Forest bioenergy feedstock, Environmental restrictions, Resource efficiency, Integrated resource assessment, Integrated sustainability assessmen

    High degree of entanglement and nonlocality of a two-photon state generated at 532 nm

    No full text
    In the last years the attention of the scientific community on the generation of entangled states has constantly increased both for their importance in the foundation of quantum mechanics and for their application in the quantum computation and communication field. To these aims high quality of generated states is required. A standard procedure to produce entangled photons pairs is spontaneous down conversion process in nonlinear crystals. In this paper we report preparation of quantum entangled states using CW laser at 266 nm pumping the standard Kwiat’s source. We have been able to generate the full set of Bell’s states with very high purity, fidelity and Concurrence which have been estimated using standard tomography procedure. To proof the high degree of achieved entanglement, we performed a non-locality test obtaining a high violation of the CHSH inequality

    High degree of entanglement and nonlocality of a two-photon state generated at 532 nm

    No full text
    In the last years the attention of the scientific community on the generation of entangled states has constantly increased both for their importance in the foundation of quantum mechanics and for their application in the quantum computation and communication field. To these aims high quality of generated states is required. A standard procedure to produce entangled photons pairs is spontaneous down conversion process in nonlinear crystals. In this paper we report prepa- ration of quantum entangled states using CW laser at 266 nm pumping the standard Kwiat\u2019s source. We have been able to generate the full set of Bell\u2019s states with very high purity, fidelity and concurrence which have been estimated using standard tomography procedure. To proof the high degree of achieved entanglement, we performed non-locality test obtaining a high violation of the CHSH inequality

    High degree of entanglement and nonlocality of a two-photon state generated at 532 nm

    No full text
    In the last years the attention of the scientific community on the generation of entangled states has constantly increased both for their importance in the foundation of quantum mechanics and for their application in the quantum computation and communication field. To these aims high quality of generated states is required. A standard procedure to produce entangled photons pairs is spontaneous down conversion process in nonlinear crystals. In this paper we report preparation of quantum entangled states using CW laser at 266 nm pumping the standard Kwiat\u2019s source. We have been able to generate the full set of Bell\u2019s states with very high purity, fidelity and Concurrence which have been estimated using standard tomography procedure. To proof the high degree of achieved entanglement, we performed a non-locality test obtaining a high violation of the CHSH inequality
    corecore