7 research outputs found

    Synthesis and characterization of chitosan/sodium alginate blend membrane for application in an electrochemical capacitor

    No full text
    In this work, we report a stepwise formation method of a chitosan/sodium alginate polyelectrolyte complex (CS/SA PEC) membrane. The proposed method aiming at the utilization of the ultrasonic treatment of chitosan and sodium alginate solution allowed us to obtain a highly homogeneous hybrid membrane for electrochemical usage. The CS/SA PEC membrane saturated in a 2 M Li2SO4 aqueous solution was used in electrochemical double layer capacitor (EDLC) cell to study its applicability as quasi-solid electrolyte. Electrochemical characteristic of EDLC cells was determined by electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge/discharge methods. The results show that the EDLC cell with CS/SA PEC quasi-solid electrolyte exhibit a comparable specific capacitance (102 F g-1 for 0–0.8 V) to CS reference (100 F g-1 for 0–0.8 V) and commercial separator (99 F g-1 for 0–0.8 V) cells. Thus, the CS/SA PEC membrane can be considered as an alternative modification for chitosanbased materials of electrochemical purpose

    Differential Capacity of the Double-Layer Formed at a Solid Electrode (Pt, Au)/Ionic Liquid Interface

    No full text
    The differential capacity at the electrode (Pt, Au)/ionic liquid interface of 18 ionic liquids (ILs), was measured applying chronoamperometry. The measurements were done by a two electrode system. The double layer capacity at the Pt/IL and Au/IL interface was 1 -8 µF/cm 2 . The capacity, estimated from the impedance measurements, was approximately constant within a potential range of ca. 3 V

    Challenges for Safe Electrolytes Applied in Lithium-Ion Cells—A Review

    No full text
    The aspect of safety in electronic devices has turned out to be a huge challenge for the world of science. Thus far, satisfactory power and energy densities, efficiency, and cell capacities have been achieved. Unfortunately, the explosiveness and thermal runaway of the cells prevents them from being used in demanding applications such as electric cars at higher temperatures. The main aim of this review is to highlight different electrolytes used in lithium-ion cells as well as the flammability aspect. In the paper, the authors present liquid inorganic electrolytes, composite polymer–ceramic electrolytes, ionic liquids (IL), polymeric ionic liquids, polymer electrolytes (solvent-free polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), and composite polymer electrolytes (CPEs)), and different flame retardants used to prevent the thermal runaway and combustion of lithium-ion batteries (LIBs). Additionally, various flame tests used for electrolytes in LIBs have been adopted. Aside from a detailed description of the electrolytes consumed in LIBs. Last section in this work discusses hydrogen as a source of fuel cell operation and its practical application as a global trend that supports green chemistry

    Electrolysis as a Universal Approach for Isolation of Diverse Chitin Scaffolds from Selected Marine Demosponges

    No full text
    Three-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from three species of verongiid demosponges (Aplysina archeri, Ianthella basta and Suberea clavata) as a perfect example of possible morphological and chemical dimorphism in the case of the marine chitin sources. The electrolysis of concentrated Na2SO4 aqueous solution showed its superiority over the chemical chitin isolation method in terms of the treatment time reduction: only 5.5 h for A. archeri, 16.5 h for I. basta and 20 h for the S. clavata sample. Further investigation of the isolated scaffolds by digital microscopy and SEM showed that the electrolysis-supported isolation process obtains chitinous scaffolds with well-preserved spatial structure and it can be competitive to other alternative chitin isolation techniques that use external accelerating factors such as microwave irradiation or atmospheric plasma. Moreover, the infrared spectroscopy (ATR-FTIR) proved that with the applied electrochemical conditions, the transformation into chitosan does not take place

    Composition as a Means to Control Morphology and Properties of Epoxy Based Dual-Phase Structural Electrolytes

    Get PDF
    Structural electrolytes were prepared using a fully formulated commercially available high performance epoxy resin (MTM57) and an ionic liquid based electrolyte: lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). Through a systematic study, the composition of the formulations was found to have a greater effect than the curing temperature on the morphology and properties of the resulting structural electrolytes. The presence of lithium salt is essential to form a structurally homogeneous electrolyte. Bicontinuous morphologies containing continuous (coarse) epoxy networks surrounded by connected spherical epoxy nodules were obtained with different length scales upon varying the lithium salt concentration. Increasing the LiTFSI concentration improved the miscibility of MTM57 with the electrolyte and decreased the characteristic length scale of the resulting bicontinuous microstructure. The properties of the structural electrolytes correlated with the morphology, showing increased Young’s modulus and decreased ionic conductivity with increasing lithium salt concentration. The miscibility of the epoxy system with the electrolyte was also improved by substitution of EMIM-TFSI with an equal weight of an aprotic organic solvent, propylene carbonate (PC); however, the window of PC concentrations which resulted in structural electrolytes with bicontinuous microstructures was very narrow; at PC concentrations above 1 wt %, gel-like polymers with no permanent mesoporosity were obtained
    corecore