10 research outputs found
The hierarchical organization of natural protein interaction networks confers self-organization properties on pseudocells
BACKGROUND: Cell organization is governed and maintained via specific interactions among its constituent macromolecules. Comparison of the experimentally determined protein interaction networks in different model organisms has revealed little conservation of the specific edges linking ortholog proteins. Nevertheless, some topological characteristics of the graphs representing the networks - namely non-random degree distribution and high clustering coefficient - are shared by networks of distantly related organisms. Here we investigate the role of the topological features of the protein interaction network in promoting cell organization. METHODS: We have used a stochastic model, dubbed ProtNet representing a computer stylized cell to answer questions about the dynamic consequences of the topological properties of the static graphs representing protein interaction networks. RESULTS: By using a novel metrics of cell organization, we show that natural networks, differently from random networks, can promote cell self-organization. Furthermore the ensemble of protein complexes that forms in pseudocells, which self-organize according to the interaction rules of natural networks, are more robust to perturbations. CONCLUSIONS: The analysis of the dynamic properties of networks with a variety of topological characteristics lead us to conclude that self organization is a consequence of the high clustering coefficient, whereas the scale free degree distribution has little influence on this property
The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases
IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org
m6A-Dependent RNA Dynamics in T Cell Differentiation
N6-methyladenosine (m6A) is the most abundant RNA modification. It has been involved in the regulation of RNA metabolism, including degradation and translation, in both physiological and disease conditions. A recent study showed that m6A-mediated degradation of key transcripts also plays a role in the control of T cells homeostasis and IL-7 induced differentiation. We re-analyzed the omics data from that study and, through the integrative analysis of total and nascent RNA-seq data, we were able to comprehensively quantify T cells RNA dynamics and how these are affected by m6A depletion. In addition to the expected impact on RNA degradation, we revealed a broader effect of m6A on RNA dynamics, which included the alteration of RNA synthesis and processing. Altogether, the combined action of m6A on all major steps of the RNA life-cycle closely re-capitulated the observed changes in the abundance of premature and mature RNA species. Ultimately, our re-analysis extended the findings of the initial study, focused on RNA stability, and proposed a yet unappreciated role for m6A in RNA synthesis and processing dynamics
A dual role of dLsd1 in oogenesis: regulating developmental genes and repressing transposons
International audienc
PSICQUIC and PSISCORE: accessing and scoring molecular interactions
Item does not contain fulltext1 juli 201