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Abstract

interaction networks.

perturbations.

degree distribution has little influence on this property.

Background: Cell organization is governed and maintained via specific interactions among its constituent
macromolecules. Comparison of the experimentally determined protein interaction networks in different model
organisms has revealed little conservation of the specific edges linking ortholog proteins. Nevertheless, some
topological characteristics of the graphs representing the networks - namely non-random degree distribution and
high clustering coefficient - are shared by networks of distantly related organisms. Here we investigate the role of
the topological features of the protein interaction network in promoting cell organization.

Methods: We have used a stochastic model, dubbed ProtNet representing a computer stylized cell to answer
questions about the dynamic consequences of the topological properties of the static graphs representing protein

Results: By using a novel metrics of cell organization, we show that natural networks, differently from random
networks, can promote cell self-organization. Furthermore the ensemble of protein complexes that forms in
pseudocells, which self-organize according to the interaction rules of natural networks, are more robust to

Conclusions: The analysis of the dynamic properties of networks with a variety of topological characteristics lead
us to conclude that self organization is a consequence of the high clustering coefficient, whereas the scale free

Background

Genes encode the amino acid sequence of their protein
products that in turn assemble into organized cellular
structures to perform specific functions that support cell
physiology and organism development. In recent years
the explosion of genome sequence data has enabled the
investigation genome and proteome evolution and the
formulation of hypotheses on the mechanisms creating
diversity and fixation of the characteristics that we
observe in extant organisms [1]. The paradigm used in
comparative genomics and proteomics is that sequence
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and structure conservation is a sign of selective pressure
and can be used to identify “functional” elements [2-4].
On the other hand gene products do not act in isolation
but form a complex web whose specific links are impor-
tant to determine phenotypes. Thus, at a different level,
conservation of the specific physical and functional links
among gene products might reveal the processes that have
shaped “interactomes”, the intricate web determining the
formation of the functional complexes that we observe in
the cell. Although the available experimental information
about interactomes is not as complete and as accurate as
the one on genomes, the recent completion of large pro-
tein interaction studies has offered an unprecedented
amount of information about the protein web shaping cell
organization [5-7]. We are now in the position to ask
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questions about conservation of protein interaction net-
works. At present, comparative interactome analysis has
revealed a limited conservation when specific edges, repre-
senting physical interactions and connecting orthologous
proteins are compared in interactomes of different model
organisms [8]. On the other hand the topological proper-
ties of the graphs representing interactomes are similar in
distantly related species and markedly different from typi-
cal random graphs. As a matter of fact, all experimental
protein interaction networks display features, such as high
clustering coefficient and scale-free degree distribution
that are not found in random networks [9].

The question arises as to whether these topological
properties are found in interactomes because they are the
outcome of common evolutionary processes or rather they
have been imposed on random or quasi-random networks
by natural selection because they confer some selective
advantage. As an example, the power-law degree distribu-
tion can be explained by a model based on growth and
preferential-attachment, whereby new proteins preferen-
tially link to highly connected proteins [10]. A second type
of network models, known as hierarchical [11], can over-
come some limits of “growth and preferential attachment”
scheme and yield interactomes that are both scale free and
characterized by a high clustering coefficient.

Alternatively these two topological characteristics may
not be the result of any specific growth mechanism but
rather they may have been selected in evolution because
they confer to the cellular system some functional
advantage. While some specific links among proteins
may be conserved because they are part of functional
modules, such as for instance signaling pathways, con-
servation of global graph properties are more likely to
reflect some general properties of the cell.

We tested the hypothesis that some features of cell
organization may be explained by molding of the cell
interactome so that, under selective pressure, it acquires
specific topological characteristics that are reflected in
advantageous functional patterns in the cell.

To this purpose we use a cellular automaton model of
a cell [12] and, starting from a random spatial distribu-
tion of proteins, we let the automaton evolve under
interactions rules that are either determined experimen-
tally, thereby mimicking the interactions that occur in
the cell milieu, or selected at random. We next define a
metric of cell self organization and we show that cellular
automata evolving under experimentally-determined
interaction-constraints reach a higher level of organiza-
tion than those ruled by random interactions. Further-
more natural networks are more “robust”, since they
yield pseudocells, whose organization is not affected by
small stochastic perturbations of the initial conditions of
the system.
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Results and discussion

Model from data

Graph representations of protein interaction networks
are static and as such they are inadequate to model the
highly dynamic protein interaction network inside the
cell. To fill this methodological gap we have designed
and implemented ProtNet a computer model that cap-
tures the discrete and stochastic nature of protein inter-
actions [12]. ProtNet represents an in silico cell as a
three-dimensional lattice in which molecular entities
(proteins or protein complexes) can shift, rotate and
form new complexes with their neighbors, or dissociate,
depending on a set of interaction rules. Each lattice point
of the automaton corresponds to a volume with linear
size (~5 nm) comparable to the diameter of an average
globular protein. The cell is filled with proteins with an
occupancy (20%) compatible with the estimated crowding
of proteins in the cell cytoplasm [13]. The whole proce-
dure can be seen as a sort of “discrete molecular
dynamics” applied to interacting proteins in a cell. We
have used the ProtNet model to monitor the dynamic
consequences of the global and local properties of pro-
tein interaction networks.

The biological protein interaction networks that pro-
vide the rules for the evolution of the cellular automa-
ton are “yeast_net” and “human_net”, representing the
interactions in the yeast and human cells. Both networks
have been obtained from the resource mentha [14]. This
resource integrates all the published information curated
by the IMEx [15] databases MINT [16], Intact [17], DIP
[18], BIOGRID [19] and MatrixDB [20] and uses a rank-
ing procedure, similar to the one implemented in WI-
PHI [21], to offer human and yeast interactomes where
each interaction is assigned a weight according to
experimental support (See Additional file 1 and Addi-
tional file 2 for the list of Yeast and Human interac-
tions). yeast_net includes the 4714 interactions with the
highest weight. The complete list of experimental
human interactions has been filtered by setting a weight
threshold in order to have a number of high confidence
interactions comparable with that of yeast_net. The two
resulting networks both include 1890 protein species
(nodes) and 4714 interactions (edges). To each natural
network we associate a random network assembled
according to Erdés-Rényi (ER) model [22]. In Table 1
we have reported the main topological characteristics of
the networks that we have used in the simulations pre-
sented here.

Irrespective of the interactions rules, starting from a ran-
dom distribution of proteins in the space, the ProtNet cell
evolves in time till it reaches a dynamic equilibrium state
where the number of complexes of a given degree remains
approximately constant (Figure 1). We call the cubic
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Table 1. Topological metrics of the networks used for the
simulations in ProtNet SSI (Self-Similarity Index), SFFI
(Scale Free Fitting Index), APL (Average Path Length),
ACC (Average Clustering Coefficient)

Network  MAX SFFI APL DIAMETER TRANSITIVITY ACC
Ssl

Yeast 6431 0.885 5773 17 0.313 0.327

Human 2051 0.927 4511 13 0.070 0.090

Erdos- 1.342 0325 4863 10 0.002 0.002

Rényi

lattice whose organization evolves under the rules set by a
protein interaction network a “pseudocell”.

We have used such a model to answer the following
questions about pseudocell organization.

a) Is the pseudocell obtained by using as input an
experimental network different (i.e. more organized)
than one originating from a network with an equiva-
lent number of nodes connected at random?

b) If we perform independent simulations with the
same input graph, how similar are the structures of the
resulting pseudocells? Is the structure of pseudocells
governed by experimental interaction rules more
robust to perturbations introduced in the initial system
settings? Does it make any difference if the input graph
is a random or a natural network?

c¢) What are the network topological properties
responsible for self-organization?

Self-Similarity Index: a measure of cell organization

Interactomes obtained by integrating protein interaction
data compiled from a variety of experimental techniques
appear as intricate webs where each protein can deal with
a large number of partners. This somewhat contrasts with
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the observation of organized leaving cells where any given
protein tends to form one or a few specific protein
complexes. Ribosomal proteins mostly assemble into ribo-
somes whereas proteasomal proteins are found preferen-
tially in proteasomes. Even a simple interactome, such as
the one in (Figure 2) can in principle support the forma-
tion of many complex types that are compatible with the
rules established in the interaction graph. Nevertheless
complexes formed in natural cells take a precise struc-
ture and dynamic organization emerging from both
local and global properties of the interactome topology.
In order to investigate if our model can simulate these
self-organization properties we observed the evolution
of the organization of our cellular automaton under the
constraints of the interaction rules encoded in the inter-
actome. We define a pseudocell as more organized if
contains complexes that are more “coherent”, that is if
they are characterized by the presence of a cohesive
subset of interacting proteins that, like a repeating pat-
tern, can be found in many complexes. The rationale
behind the idea of coherence and organization is more
clearly explained in Figure 2. The two outlined pseudo-
cells are both compatible with the interaction rules
represented in the simple graph at the top. However,
the complexes of different composition that are formed
in the pseudocell at the left are fewer than the ones
found at the right. Thus we define the first pseudocell
as more organized. We introduce here a new metrics,
the Self-Similarity Index (SSI), to quantify self-organiza-
tion in pseudocells and compare pseudocells originated
from different networks. The SSI is formally defined in
the methods section. In a few words it defines how com-
plex a pseudocell is. A pseudocell formed by identical
large complexes has maximum SSI whereas a pseudocell
containing a large variety of complexes of different com-
position has a small SSI.

ProtNet pseudocell: Step 0

ProtNet pseudocell:Step 25000

ProtNet pseudocell:Step 150000

40
40

20 30
20 30

10
10

1] 0 20 30 40 50

Figure 1 ProtNet pseudocell dynamic organization. The three boxes represent snapshots of the same pseudocell frozen at different steps
during the simulation. In the first box protein monomers of different protein species are represented with different colors. After 5000 steps
many small complexes are formed as a result of the diffusion and interaction dynamics. The size of the circles reflects the number of protein
species in the complexes. Smaller spheres correspond to monomeric proteins. Complexes with the same number of protein species but different
composition have different random colors. The third snapshot represents a psuedocell at equilibrium.
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Figure 2 Definition of coherence. The cartoon schematically depicts our definition of coherence. The complexes that are formed in either
pseudocell in the lower part of the figure are compatible with the interaction network at the top. However, the two pseudocells are
fundamentally different because, while in the pseudocell on the left much fewer complexes are formed (see the list of complex species on the
left side of the first pseudocell), in the one on the right each protein takes part in a larger variety of complexes as depicted in the list of
complexes on the right side of the second pseudocell. Thus we conclude that the pseudocell on the left is simpler and therefore more
organized than the one on the right. The similarity index between two complexes is obtained from the following formula

(IC1 N Cal)?

S.1(Cy, C)) =
(€1 C2) |A(Cy, Co)| +1

. The Self-Similarity Index of a pseudo-cell then can be computed as ggp ©) =

n—1 n
i max;_,,

n

SI(C;, )

Starting from proteins randomly distributed in the
cell grid, Figure 3 shows the evolution in time of the
SSI in pseudocells whose interactions are governed by
the experimentally determined networks of S. cerevisiae
(Figure 3 upper chart) and Homo sapiens (Figure 3
lower chart) or by random networks, with approxi-
mately the same number of nodes and edges. During
the interaction and diffusion phases, small complexes
start to aggregate till the pseudocell reaches an equili-
brium state in which the emerged complex structure
remains stable. The SSI rises comparably in both types
of pseudocells, but after a few thousand simulation
steps, when large complexes begin to form, the SSI of
pseudocells governed by random networks reaches a
plateau, while that of pseudocells governed by natural
network interaction rules continues to grow. Notably
the self organization properties of natural networks are
observed in simulations of pseudocells covering a wide
range of protein concentrations (Additional File 3).
Consistently with our definition of SSI these results
indicate that pseudocells governed by natural networks
reach a higher level of organization, irrespective of pro-
tein concentration.

Pseudocells are robust to perturbations

An additional property of living cells is that of being
robust to perturbations. In other words we expect a cell
model to be able to recover organization, once it is per-
turbed, and to reach again a structure that is similar to
that it had before perturbation. We modeled this prop-
erty by measuring the similarity/diversity of cell organiza-
tion when equilibrium is reached in the cell automaton,
starting from different initial “cell configurations” (distri-
bution of proteins inside the lattice). To compare differ-
ent pseudocells we defined a second metric of cell
organization that we call the Inter-Cells Similarity Index
(ICSI). This metric (see methods) is similar to the SSI
that we have defined to monitor cell organization. The
difference being that ICSI measures the similarity of the
ensemble of complexes that are formed in two different
cells and not the diversity of the complexes in a cell.
Figure 4 shows the pairwise ICSI values of ten different
pseudocells for each of the three types of input networks
(Yeast, Human and Random). Similarly to what observed
in the case of a self organization of single cells, pseudo-
cells that organize under the rules of the natural interac-
tomes reach an organization that is similar in all the
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a similar experiment where we used the human interactome.

Figure 3 Self-Similarity Index evolution. We have measured the SSI values at different times during the evolution of a pseudocell. The first
chart A) shows the evolution in time of the SSI for ten pseudocells that evolved following the interaction rules of the yeast protein interaction
network and ten whose organization was evolved under the rules established by the random network. The second chart B) shows the results of

cells, irrespective of the initial distribution of the protein
monomers.

Self-Similarity Index at equilibrium depends on the
topology of the underlying interactomes

Next we asked whether any topological property of
the protein interaction network was responsible for
the observed variation in the kinetic of pseudocell

organization. To this end we generated families of net-
works with different, tuned, topological properties. Dif-
ferent algorithms have been proposed to generate
networks with tunable parameters [23-27]. Most of
them are based on the configuration model proposed in
[24]. Here, in order to generate networks with tunable
degree distribution and transitivity we used the algo-
rithm developed by Volz [28]. We designed the network
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Figure 4 Intercellular Similarity Index (ICSI) between
pseudocells evolved under different starting conditions and
different network rules. For each of the three networks (yeast,
human and random) we carried out 10 different simulations starting
from different random distributions of the proteins in the
pseudocell grid. We next calculated the ICSI between all the
possible pairs of the 10 resulting pseudocells. The results are
presented as boxplots.

topology in three different settings:

» Designed networks whose degree distribution is
taken from the yeast interactome but having transitiv-
ity coefficient in the interval 0[1] with steps of 0.1.

+ Designed networks whose degree distribution is that
of an Erdos-Rényi random network with transitivity
coefficient in the interval 0[1] with steps of 0.1.

« Designed networks whose degree distribution is that
of the human natural interactome with transitivity
coefficient in the interval 0[1] with steps of 0.1.

Table in Additional file 4 reports the topological char-
acteristics of the described networks (respectively Vol-
zYeast, VolzRandom and VolzHuman) together with the
values of the Yeast and Human natural interactomes
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and an Erdos-Rényi network. These networks with
designed topological properties, namely with different
degree distributions and transitivity coefficients, were
used as input for ProtNet. After 100000 steps the equili-
brium SSI was measured. Notably we observed that
increasing values of the transitivity coefficient corre-
sponded to increased SSI values. To describe such rela-
tionship, we modeled a multiple linear regression
equation where the SSI was associated to the different
topological metrics of the initial networks. Our model is
defined by the following regression equation:

SSI; = Bo+P1SFEL+ByAPli+B3 DIAMETER;+B4ACCi+B5TRANSITIVITY;+BsMODULARITY +¢;

where the dependent variables are the scale free fitting
index [29] (SFFI), average path length (APL), diameter,
average clustering coefficient [30] (ACC) (collective
dynamics of small world networks), transitivity [31,32].
The dispersion matrix in Figure 5 shows all pair-wise
combinations of the variables. A linear relationship
between two or more independent variables indicates
redundancy in explaining the dependent variable. The
matrix describes linear relationships between transitivity,
clustering coefficient and modularity and between aver-
age path length and diameter. F-test following regression
allowed us to determine the redundant variables and
remove them from the model. Regression results show a
linear relationship between the transitivity coefficient
(associated to the hierarchical modularity) and the SSI,
while other network metrics such as the degree distribu-
tion, the average path length or the modularity were
either redundant or non-significant. The adjusted R-
squared value, used to measure the goodness of the fit,
indicates that about the 80% of the SSI is explained by
the transitivity coefficient. Further details about multiple
linear regression is available in Additional file 2.

Conclusions

The available experimental information on protein inter-
action networks reveals a poor conservation of the speci-
fic interactions between ortholog proteins in different
model organisms. This is not surprising and could be
explained by a high functional redundancy of some of the
interactions occurring in a cell. In other words, aside
from those few interactions that are necessary to form
very specific complexes, many of the remaining interac-
tions revealed by the experimental methods that are cur-
rently used to draw the interactome could be inessential
but contribute in a redundant way to cell organization.
For instance a protein that needs to perform its function
near the cytoskeleton may find different ways to achieve
its spatial localization by interacting with different part-
ners linked to the cytoskeleton. On the other hand all
interactomes described so far are characterized by graph
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Figure 5 Scatterplot Matrix of the linear dependencies between topological metrics. The scatter-plot matrix shows all pair-wise
correlations between the topological metrics measured for our networks: scale-free fitting index (SFFI), average path length (APL), Diameter, Self-
Similarity Index (SSI), Average Clustering Coefficient (ACC), Transitivity and modularity. Each small chart represents the correlation between the
metrics described in the corresponding diagonal elements. A linear relationship between all pair-wise combinations of SSI, ACC, Transitivity and
Modularity is clearly evident. Also APL and Diameter are linearly correlated.

topological properties that are conserved in distantly  proteins can occur. Although in principle the model can
related species. represent cells where proteins are present at different

Here we have asked whether any of the topological fea-  concentrations and interact with different affinities, here
tures of protein interaction networks could be responsi- we focus on the topological properties of the network
ble for the ability of cells to reach a robust organization. and we use a simple model where proteins are all present
To this end we have used a cell automaton model that at the same concentration and interact with the same
simulates a cell space where interactions between “strength”.
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By defining a new metrics of cell organization the Self-
Similarity Index, we have shown that starting form a
random distribution of protein monomers in a cell lat-
tice, at each time step, protein complexes begins to form
and the pseudocell starts organizing its structure. Inter-
estingly the pseudocells that evolve under the rules of a
natural protein interaction network reach a higher level
of organization when compared to cells evolved under
the interaction rules imposed by a random network.

Since the interactomes differ from random network in
their topological properties we have asked which topolo-
gical property is responsible for the ability of natural
cells to reach a robust organization. By assembling mod-
ified networks with tailored degree distribution and
clustering coefficients we have been able to show that
the clustering coefficient explains more than 80% of the
dependence of the Self-Similarity Index on topological
properties. Thus, we propose that the clustering coeffi-
cient of the protein interaction network of natural cells
has been fixed by natural selection to confer self orga-
nizing properties on the cell interactome.

Methods

ProtNet

ProtNet [12] is a cell automaton that permits the simu-
lation and analysis the dynamic interactions occurring
in a cell lattice under a set of interaction rules The
simulator iterates for a number of time steps following
the interaction rules contained in an input graph in
which the edges link interacting proteins. A probability
of forming and breaking a bond at each time step is
associated to each pair of proteins. The algorithm runs
the following steps:

« An empty lattice containing a given number of
cubic sites is created. The linear dimension of the
lattice is given as input to ProtNet.

+ A single randomly oriented monomeric protein
can occupy a lattice site. The number of proteins for
each molecular species is fixed at the beginning of
the simulation. Protein monomers are distributed
randomly in the lattice cells.

Each simulation step is composed of two phases lead-
ing to a change in the cell configuration:

Interaction phase: The entire grid is visited site-by-site.
If the site is occupied, the protein in it can make a con-
nection to proteins occupying neighboring sites, thus
forming a new complex. Alternatively an existing bond
can be broken thus disrupting an existing complex. Bind-
ing is stochastic and the probability of forming a complex
(pon) is related to the association rate constant (k,,) of
the interacting protein pair. After association a complex
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moves as a single entity. Similarly a binding between two
proteins can break down with a dissociation probability
(pofr) related to their dissociation rates. Since kinetic con-
stants describing the association and dissociation of all
pairs of proteins are not currently available such prob-
ability has been set to an arbitrary value that is the same
for all the proteins as suggested by [12].

Diffusion phase: A second site by site visit is carried
out. If the site is occupied, the protein and the complex it
belongs to are first rotated and then translated. Com-
plexes or proteins can rotate by 90 degrees around their
center of mass in a randomly chosen direction. Rotations
are rigid, that is, in multi protein structures, the whole
complex undergoes a rotation and there is no torsion.
For multi protein complexes the probability of rotation is
inversely proportional to their diameter. During the rota-
tion and translation proteins occupying target sites can
be recursively moved with a probability that is a function
of the ratio between the masses of the hitting and hit
protein/complex.

As the diffusion coefficient of a molecule in a dilute
solution increases linearly with the inverse of the radius,
monomers have the highest probability of moving to
one of the neighbouring sites at each time step. As a
consequence complexes diffuse more slowly. In addition
we assumed that all proteins have identical diffusion
coefficients.

Proteins in ProtNet have six binding sites, thus a sin-
gle protein can bind to, at most, six other partners. To
prevent the formation of very large complexes, each
protein species can participate in a given complex only
once.

For each simulation step ProtNet produces a list of
the complexes in the reference pseudo-cell, a dynamic
and stochastic representation of the information con-
tained in static protein interaction graphs.

Experimental settings
For our experiments the three-dimensional pseudocell
linear dimension has been fixed to 50. Thus the whole
lattice contains 125000 sites. The lattice is filled with pro-
teins such that the occupancy is 20%. The interaction
rules for natural networks are obtained from the human
and yeast interactomes. The probability of creating a
bond is set to 0.7 for all the protein pairs, while the prob-
ability of breaking a bond is set to 0.002. We have carried
out simulations for 150000 steps on natural and random
pseudocells. A simulation step, with a lattice containing
125000 sites at a protein concentration of 20%, takes 0.03
seconds.

To each natural network we associate a random net-
work obtained by the Erdos-Rényi (ER) model [22]
denoted as G(N, p). The method starts with N vertices
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and randomly links two nodes with probability p. In
order to have the same number of edges of the natural
m
networks we set p= N(N — 1) where m is the desired
2
number of edges and N is the number of proteins in the
network. We set (m = 4714 and N = 1890).

Network construction

The input used in ProtNet is a list of binary interactions
sorted by relevance score [14]. yeast_net is a network
extracted from mentha [14]. The complete list of inter-
actions was filtered in order to minimize false-positives
and use only interactions described by more than one
method. The resulting network is composed of 1890
protein species and 4714 interactions.

human_net, similarly to yeast_net is a network
extracted from mentha, and containing a ranked list of
human protein interactions that was limited to a size
comparable to that of yeast_net.

We associate a node to each protein species in the list
and draw an edge for each experimentally reported inter-
action. The interactomes used for our experiments can be
formally represented as undirected unweighted graphs.

Network analysis

To calculate and compare the topological properties of
the different networks we used Cytoscape [33], a software
platform for the visualization of molecular interaction
networks extended with the NetworkAnalyzer plug-in
[34]. From the plethora of available metrics we consid-
ered Clustering coefficient [30], Transitivity [31], Modu-
larity [35], Connectivity and Degree distribution [36],
Average path length, Diameter and Scale-free fitting
index [29].

Self-Similarity Index

In order to analyze the similarity between complexes we
have introduced a measure called Self-Similarity Index. For
our purpose we define a complex as a set of interacting
proteins. Let C; and C, be the set of distinct protein species
in two complexes. Their similarity index is defined as:

(IC1NCa))?
S.1.(Cy,Cy) IA(C1, o)l + 1

where A is the symmetric difference of the two com-
plexes. The intersection between the two complexes is
raised to the second power to give more importance to
larger complexes.

Let C = {Cy, Cy, ... Cy} be the list of complexes within
a pseudocell, we define the Self-Similarity Index of the
pseudocell as follows:
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+ We first generate a similarity matrix consisting of
n rows and n columns as in Additional file 5.
+ Each entry (i,j) of the similarity matrix contains the
value of the Similarity Index (S.I.) between the com-
plexes C; and C;.
+ Then the Self-Similarity Index can be computed
using the following formula:

Z?;ll max]”:ﬂl

n

S.I(C;, C:
SSI(C) = (G 65)

In other words the Self-Similarity Index of a pseudo-
cell C is the mean value of the best similar pairwise
similarities of the complexes in C.

Inter-Cells Similarity Index (ICSI)

Given the definition of the similarity index between two
complexes it is possible to compare the complex com-
position of different pseudo-cells and measure their
similarity value.

Let A= {Al,Az, tee ,An} and B = {Bl,Bz, e ,Bm} be
the list of complexes of two pseudo-cells A and B. The
Inter-cells Similarity Index can be computed as follows:

First generate a similarity matrix with n rows and m
columns (Additional file 6). Then the algorithm pro-
ceeds as follows:

+ Select the two complexes with the largest Similar-
ity Index

« Store their Similarity Index into a List L

+ Remove from the matrix the row and the column
associated to those complexes

+ Repeat the previous three steps until either col-
umns or rows are finished

In other words at each step the algorithm finds the
best matching complexes and computes their Similarity
Indexes. The Inter-Cells Similarity Index (ICSI) is then
computed as the mean value of the Similarity Indexes
stored into the list.

Generation of perturbed random networks

The comparison of different types of pseudo-cells to
identify the topological metrics responsible for self-orga-
nization is based on the use of different initial networks,
with tunable topological parameters as input for Prot-
Net. Different algorithms are available in the literature
to generate random networks with tunable parameters
[23-27]. Most of them are based on the configuration
model proposed by Molloy and Reed which produces a
random graph with a prescribed degree sequence. In the
configuration model each node has an assigned potential
number of edges called stubs. Edges are created
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randomly choosing two nodes with free stubs. An algo-
rithm used to generate random networks with tunable
degree distribution and transitivity is given in [28]. It is
based on two mechanisms known as preferential attach-
ment and dynamic growth. The input values are the
number of nodes, a list of degrees to assign to nodes
and the desired transitivity value. The algorithm works
as follows:

« Start initializing all nodes with a degree drawn

from the degree list.

« A starting node v, is randomly selected from the

list of nodes

« Neighbors are matched in the following way:
« Form a list called PotentialTriads of all the
nodes at distance 2 from the current node vi
« For each node in PotentialTriads form a con-
nection with the current node with a probability
depending on the desired Transitivity coefficient.
« If no neighbors were selected from Potential-
Triads, randomly select a new node to add to the
network.

The network grows until all nodes have neighbors.

List of abbreviation used
SSI - Self-Similarity Index
ICSI - Inter-cells Similarity Index
ACC - Average clustering coefficient
APL - Average path length
SFFI - Scale free fitting index

Additional material

Additional file 1: Yeast network. The file contains the list of couples of
interacting proteins filtered from the mentha "Yeast” interactome.

Additional file 2: Human network. The file contains the list of pairs of
interacting proteins filtered from the mentha “Homo Sapiens”
interactome.

Additional file 3: SSI as a function of protein occupancy. Simulations
were carried out using either the yeast_net network or a random
network at the indicated protein occupancies. The SSI was computed for
150000 simulation steps.

Additional file 4: Table of the networks with prescribed topological
metrics. The file contains the table with the topological metrics of the
random interactomes obtained by perturbing transitivity coefficient and
degree distribution.

Additional file 5: Similarity Matrix containing Similarity Indexes of
the complexes of a pseudo-cell.

Additional file 6: Similarity Matrix containing Similarity Indexes of
the complexes of two different pseudocells A and B.
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