39 research outputs found

    Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system

    Get PDF
    Leaching of nitrate from fertilisers diminishes nitrogen use efficiency (the portion of nitrogen used by a plant) and is a major source of agricultural pollution. To improve nitrogen capture, grasses such as brachiaria are increasingly used, especially in South America and Africa, as a cover crop, either via intercropping or in rotation. However, the complex interactions between soil structure, nitrogen and the root systems of maize and different species of forage grasses remain poorly understood. This study explored how soil structure modification by the roots of maize (Zea maize), palisade grass (Brachiaria brizantha cv. Marandu) and ruzigrass (Brachiaria ruziziensis) affected nitrate leaching and retention, measured via chemical breakthrough curves. All plants were found to increase the rate of nitrate transport suggesting root systems increase the tendency for preferential flow. The greater density of fine roots produced by palisade grass, subtly decreased nitrate leaching potential through increased complexity of the soil pore network assessed with X-ray Computed Tomography. A dominance of larger roots in ruzigrass and maize increased nitrate loss through enhanced solute flow bypassing the soil matrix. These results suggest palisade grass could be a more efficient nitrate catch crop than ruzigrass (the most extensively used currently in countries such as Brazil) due to retardation in solute flow associated with the fine root system and the complex pore network

    A farming system typology for the adoption of new technology in Bangladesh

    Get PDF
    Over the last three decades, few studies have been conducted to tackle the complexity and heterogeneity of Bangladesh farming systems. We address these research gaps with a new survey. Accordingly, a survey was conducted in North-Western Bangladesh to understand how socio-economic traits influence technology adoption and to identify and characterize key farm types. The survey was based on farm household characteristics, farm structure, farming practices and livestock as well as the economic performance of the farm. Principal component analysis (PCA) and cluster analysis (CA) were used to establish the different farm typologies, and the data set based on 27 variables was carefully analysed. The findings confirmed that the key variables that significantly affect the adoption of new agricultural technologies relate to age, farming experience, level of education of the household head, income, access to markets, land ownership, the proportion of hired labour, savings, food self-sufficiency and income from off-farm activities. Four main farm types were identified in the study area based on resource endowment and livelihood orientation. These are (1) well-resourced farmers entirely dependent on agriculture and less reliant on off-farm activities; (2) moderately resourced households, which are headed by an older male with greater farming experience and which are engaged in both on-farm and off-farm activities; (3) resource-constrained households with cattle as the main livestock and with income generated by the sale of livestock products; and (4) severely resource-constrained households which are headed by young farmers/men and where income is generated by off-farm activities. These four farm categories represent the heterogeneity of farms in North-West Bangladesh, and it is hoped that the development of this farm household typology will help particularly the extension service, to set up appropriate extension advice that will benefit the farming community

    Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography

    Get PDF
    Zero-tillage (ZT) is being increasingly adopted globally as a conservationist management system due to the environmental and agronomic benefits it provides. However, there remains little information on the tillage effect on soil pore characteristics such as shape, size and distribution, which in turn affect soil physical, chemical and biological processes. X-ray micro Computed Tomography (ÎŒCT) facilitates a non-destructive method to assess soil structural properties in three-dimensions. We used X-ray ÎŒCT at a resolution of 70 ÎŒm to assess and calculate the shape, size and connectivity of the pore network in undisturbed soil samples collected from a long-term experiment (~30 years) under zero tillage (ZT) and conventional tillage (CT) systems in Botucatu, Southeastern Brazil. In both systems, a single, large pore (>1000 mm3) typically contributed to a large proportion of macroporosity, 91% in CT and 97% in ZT. Macroporosity was higher in ZT (19.7%) compared to CT (14.3%). However the average number of pores was almost twice in CT than ZT. The largest contribution in both treatments was from very complex shaped pores, followed by triaxial and acircular shaped. Pore connectivity analysis indicated that the soil under ZT was more connected that the soil under CT. Soil under CT had larger values of tortuosity than ZT in line with the connectivity results. The results from this study indicate that long-term adoption of ZT leads to higher macroporosity and connectivity of pores which is likely to have positive implications for nutrient cycling, root growth, soil gas fluxes and water dynamics

    Conservation tillage and residue management improve soil health and crop productivity—Evidence from a rice-maize cropping system in Bangladesh.

    Get PDF
    The rice-maize (R-M) system is rapidly expanding in Bangladesh due to its greater suitability for diverse soil types and environments. The present conventional method of cultivating puddled transplanted rice and maize is input-intensive, decreases soil health through intense ploughing, and ultimately reduces farm profitability. There is a need to investigate alternatives. Accordingly, we conducted a replicated 2-year (2020–2021) field study to investigate the effects of conservation agriculture (CA) based tillage and crop establishment (TCE) techniques and residue management practices on the physical, chemical, and biological properties of soil along with crop productivity and the profitability of rice-maize systems in the sandy loam soil of Northwest Bangladesh. Two TCE techniques Puddled transplanted rice (PTR) followed by Conventional tillage maize (CTM) and strip tillage direct-seeded rice (STDSR) followed by strip-tilled maize (STM) were assigned to the main plots and different percentages of crop residue retention (0, 25, and 50% by height) were allocated to the subplots. Results showed that a reduction in bulk density (BD), soil penetration resistance (SPR), and increased soil porosity were associated with STDSR/STM-based scenarios (strip tillage coupled with 25 and 50% residue retention). The soil organic carbon (SOC) fractions, such as dissolved organic C (DOC), light and heavy particulate organic matter C (POM-C), MAOM, and microbial biomass C (MBC) levels in the 0–10 cm layer under ST based treatments were 95, 8, 6, 2 and 45% greater, respectively, compared to CT with no residue treatment. When compared to the CT treatment, the DOC, light POM-C, heavy POM-C, and MAOM in the 10–20 cm layer with ST treatment were 8, 34, 25, 4 and 37% higher, respectively. Residue retention in ST increased average rice, maize, and system yields by 9.2, 14.0, and 14.12%, respectively, when compared to CT. The system gross margin and benefit-cost ratio (BCR) were 1,515ha−1and1.90underconventionaltillageto1,515 ha−1 and 1.90 under conventional tillage to 1,696 ha−1 and 2.15 under strip-tillage practices. Thus, our study suggests that CA could be an appropriate practice for sustaining soil fertility and crop yield under R-M systems in light-textured soils or other similar soils in Bangladesh

    Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing

    Get PDF
    Soil moisture information is essential to monitoring of the intensity of droughts, the start of the rainy season, planting dates and early warnings of yield losses. We assess spatial and temporal trends of drought over the Brazilian semiarid region by combining soil moisture observations from 360 stations, root zone soil moisture from a leading land surface model, and a vegetation health index from remote sensing. The soil moisture dataset was obtained from the network of stations maintained by the National Center of Monitoring and Early Warning of Natural Disasters (Cemaden), in Brazil. Soil water content at 10 to 35 cm depth, for the period 1979–2018, was obtained from running the JULES land surface model (the Joint UK Land Environment Simulator). The modelled soil moisture was correlated with measurements in the common period of 2015–2018, resulting in an average correlation coefficient of 0.48 across the domain. The standardized soil moisture anomaly (SMA) was calculated for the long-term modelled soil moisture and revealed strong negative values during well-known drought periods in the region, especially during El-Niño years. The performance of SMA in identifying droughts during the first 2 months of the raining and cropping season was similar to the Standardized Precipitation Index (SPI), commonly used for drought assessment: 12–14 events were identified by both indices. Finally, the temporal relationship between both SMA and SPI with the Vegetation Health Index (VHI) was assessed using the cross-wavelet transform. The results indicated lagged correlations of 1 to 1.5 months in the annual scale, suggesting that negative trends in SMA and SPI can be an early warning to yield losses during the growing season. Public policies on drought assessment should consider the combination of multiple drought indices, including soil moisture anomaly

    HPV types and cofactors causing cervical cancer in Peru

    Get PDF
    We conducted a hospital-based case-control study in Peru of 198 women with histologically confirmed cervical cancer (173 squamous cell carcinomas and 25 cases of adenocarcinoma/adenosquamous carcinoma) and 196 control women. Information on risk factors was obtained by personal interview. Using PCR-based assays on exfoliated cervical cells and biopsy specimens, HPV DNA was detected in 95.3% of women with squamous cell carcinoma and in 92.0% of women with adenocarcinoma/adenosquamous carcinoma compared with 17.7% in control women. The age-adjusted odds ratio was 116.0 (95% Cl = 48.6–276.0) for squamous cell carcinoma and 51.4 (95% Cl = 11.4–232.0) for adenocarcinoma/adenosquamous carcinoma. The commonest types in women with cervical cancer were HPV 16, 18, 31, 52 and 35. The association with the various HPV types was equally strong for the two most common types (HPV 16 and 18) as for the other less common types. In addition to HPV, long-term use of oral contraceptives and smoking were associated with an increased risk. HPV is the main cause of both squamous cell carcinoma and adenocarcinoma in Peruvian women. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study

    Land availability for sugarcane derived jet-biofuels in São Paulo—Brazil

    No full text
    The aviation industry is committed to reducing its environmental impact and has established ambitious goals to decrease CO₂ emissions by 50% by to 2050. The replacement of fossil fuels by jet-biofuels is one of the main strategies to attain the emission targets. Therefore, the aim of this study was to provide a detailed survey on land availability for sugarcane production, one of the most promising feedstock options for jet-biofuels, in the Brazilian state of São Paulo, where the technological resources are concentrated. This analysis was carried out by integrating georeferenced information on land use, protected areas, soil fertility, terrain slope and climatic conditions into a conditional decision support procedure, based on Boolean inference techniques. Our results showed that 3,501,590 ha would be potentially available for sugarcane expansion in the year 2013. Almost 80% of the mapped lands have high economic potential once they are located in a distance lower than or equal to 25 km from the processing units. If properly included in the productive sector, the available lands could increase sugarcane production by 73% in relation to current levels. That could lead to a growth of 147% (20.6 billion liters) in the ethanol production compared to the production obtained in 2015. Nevertheless, long-term policies, logistic improvements and environmental standard definitions on jet-biofuels still remain as major challenges to boost feedstock production, as well as, to implement financial and regulatory measures necessary to promote jet-biofuels production and use

    Quantification of tropical soil attributes from ETM+/LANDSAT-7 data

    No full text
    The characterization of physical and chemical soils attributes is a pressing necessity for the agricultural land management optimization in many countries. Currently, soil analyses are performed by chemical treatments in a laboratory, generating environmental and time-consuming problems. Remote sensing techniques can be faster and cheaper than conventional methods, do not generate chemical residues and are non-destructive to the samples. The objective of the present work was to determine a remote sensing technique to estimate soil physical and chemical attributes in the regions of Paraguacu Paulista and Rio Brilhante, in the States of Sao Paulo and Mato Grosso do Sul, respectively, Brazil, using reflectance data obtained by a sensor located in orbit. Fieldwork was performed to validate orbital data. A total of 110 soil samples were collected representing 43,000 h for the development of spectral models. Landsat-7 ETM+ images were atmospherically corrected and transformed to reflectance. The soil samples observed in the field were located by GPS and evaluated in the orbital image. The method used consists in a detailed investigation of the spectral data, in which the spectral curve, the position of the data in a graphic dispersion, the colour compositions and the pixel cursor values are evaluated. Spectral models were determined to quantify soil attributes. Soil samples from a different area had their attribute contents determined by the models. The attributes studied were sand, silt, clay, pH (CaCl2), organic matter, phosphorus, potassium, calcium, magnesium, aluminium, hydrogen, cation exchange capacity (CEC), sum of cations (SC) base saturation (BS) and aluminium saturation ( AS). The results showed weak correlations with some soil attributes, such as SC, K, Ca, Mg, Al and P. High correlations ( reaching 0.86) were obtained with sand, clay, silt, OM, CEC and H. On the other hand, validation procedure indicated that the best attributes for quantification were clearly clay (0.61) and sand (0.5). Therefore, there is strong evidence that these attributes can be predicted in similar landscapes, using the multiple-linear equations developed in this study. This knowledge can be useful in many ways in agriculture, such as soil mapping, determining soil attributes, determining soil information in difficult access regions, and diminishing traditional soil analyses with environmental protection.28173813382
    corecore