268 research outputs found

    Toward the recovery of a sense of self: An interpretative phenomenological analysis of patients' experience of body-oriented psychotherapy for schizophrenia

    Get PDF
    Objective: Increasing evidence supports the efficacy of body-oriented psychotherapy for schizophrenia. Yet, so far no research has investigated outcome in relation to therapy process: why and how body-oriented psychotherapy is effective. In this study we qualitatively explore participants’ experience of a manualized body-oriented psychotherapy (BPT) for schizophrenia to shed light on the process of therapeutic change. Method: We conducted in-depth interviews with 6 participants who completed a 10-week BPT group intervention. Interviews explored participants’ experience of change and helpful aspects of therapy and were analysed using interpretative phenomenological analysis. Findings: We identified 6 master themes across the interviews: (a) Being a whole: body-mind connection; (b) Being agentic and being able; (c) Being unique and worthy: being accepted for who one is; (d) Changing interactions: engaging in authentic interpersonal contact; (e) Being part of a group: feeling integrated; (f) Hope and investing in the future. Conclusion: We discuss the clinical implications for each theme and bring the findings together by describing therapeutic change in schizophrenia as a recovery of sense of self at different but interlocked levels. Moreover, we put forward recommendations for both specific and common factors for schizophrenia therapy

    Linking healthcare and societal resilience during the Covid-19 pandemic

    Get PDF
    Coronavirus disease 2019 (Covid-19) has highlighted the link between public healthcare and the broader context of operational response to complex crises. Data are needed to support the work of the emergency services and enhance governance. This study develops a Europe-wide analysis of perceptions, needs and priorities of the public affected by the Covid-19 emergency. An online multilingual survey was conducted from mid-May until mid-July 2020. The questionnaire investigates perceptions of public healthcare, emergency management and societal resilience. In total, N = 3029 valid answers were collected. They were analysed both as a whole and focusing on the most represented countries (Italy, Romania, Spain and the United Kingdom). Our findings highlight some perceived weaknesses in emergency management that are associated with the underlying vulnerability of the global interconnected society and public healthcare systems. The spreading of the epidemic in Italy represented a ‘tipping point’ for perceiving Covid-19 as an ‘emergency’ in the surveyed countries. The respondents uniformly suggested a preference for gradually restarting activities. We observed a tendency to ignore the cascading effects of Covid-19 and possible concurrence of threats. Our study highlights the need for practices designed to address the next phases of the Covid-19 crisis and prepare for future systemic shocks. Cascading effects that could compromise operational capacity need to be considered more carefully. We make the case for the reinforcement of cross-border coordination of public health initiatives, for standardization in business continuity management, and for dealing with the recovery at the European level

    Characterization of LPBF Produced Fe2.9wt.%Si for Electromagnetic Actuator

    Get PDF
    This study aims to produce Fe2.9wt.%Si ferromagnetic material via laser powder bed fusion (L-PBF) for the realization of electromagnetic actuators (EMA). This study is necessary as there are no documents in scientific literature regarding the manufacturing of Iron-Silicon plungers using the L-PBF additive manufacturing (AM) technique. The microstructure, and magnetic properties were characterized using various techniques. The results indicate that the samples produced via L-PBF process exhibit good magnetic properties (μ = 748, H C= 87.7 [A/m] ) especially after annealing treatment at 1200° C for 1h (μ = 3224, H C= 69.1 [A/m]), making it a promising material for use in electromagnetic actuators

    In Situ Hexavalent Chromium Reduction by Injection of Organic Substrates in the Aquifer

    Get PDF
    Among the innovative technologies for in situ remediation of hexavalent chromium in groundwater, bio-induced reduction is under investigation. In this process the reduction of Cr(VI) is stimulated by a strongly reducing environment, created by the injection of organic substrates that are rapidly degraded by autochthonous heterotrophic microorganisms. Tests were performed at the laboratory scale to investigate the behavior of two different organic substrates from food industry (permeate from cheese whey ultrafiltration and a waste from the brewing process), in terms of dissolved Cr(VI) abatement and kinetics, also as a function of the initial Cr(VI) concentration (5000 or 10000 μg/L). The tests showed that, under proper conditions, very low Cr(VI) concentrations (1.3 g/L) and removal efficiency up to about 100% can be obtained after 36 d incubation

    Genetic structure of captive and free-ranging okapi (Okapia johnstoni) with implications for management

    Get PDF
    Breeding programs for endangered species increasingly use molecular genetics to inform their management strategies. Molecular approaches can be useful for investigating relatedness, resolving pedigree uncertainties, and for estimating genetic diversity in captive and wild populations. Genetic data can also be used to evaluate the representation of wild population genomes within captive population gene-pools. Maintaining a captive population that is genetically representative of its wild counterpart offers a means of conserving the original evolutionary potential of a species. Okapi, an even-toed ungulate, endemic to the Democratic Republic of Congo, have recently been reclassified as Endangered by the IUCN. We carried out a genetic assessment of the ex-situ okapi (Okapia johnstoni) population, alongside an investigation into the genetic structure of wild populations across their geographic range. We found that while levels of nuclear (12 microsatellite loci) genetic variation in the wild, founder and captive okapi populations were similar, mitochondrial (833 bp of Cyt b, CR, tRNA-Thr and tRNA-Pro) variation within captive okapi was considerably reduced compared to the wild, with 16 % lower haplotype diversity. Further, both nuclear and mitochondrial alleles present in captivity provided only partial representation of those present in the wild. Thirty mitochondrial haplotypes found in the wild were not found in captivity, and two haplotypes found in captivity were not found in the wild, and the patterns of genetic variation at microsatellite loci in our captive samples were considerably different to those of the wild samples. Our study highlights the importance of genetic characterisation of captive populations, even for well-managed ex-situ breeding programs with detailed studbooks. We recommend that the captive US population should be further genetically characterised to guide management of translocations between European and US captive population

    Dysfunctional dopaminergic neurotransmission in asocial BTBR mice

    Get PDF
    Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T+ Itpr3tf/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    GAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology.

    Get PDF
    During the last decade, a multitude of novel quantitative and semiquantitative MRI techniques have provided new information about the pathophysiology of neurological diseases. Yet, selection of the most relevant contrasts for a given pathology remains challenging. In this work, we developed and validated a method, Gated-Attention MEchanism Ranking of multi-contrast MRI in brain pathology (GAMER MRI), to rank the relative importance of MR measures in the classification of well understood ischemic stroke lesions. Subsequently, we applied this method to the classification of multiple sclerosis (MS) lesions, where the relative importance of MR measures is less understood. GAMER MRI was developed based on the gated attention mechanism, which computes attention weights (AWs) as proxies of importance of hidden features in the classification. In the first two experiments, we used Trace-weighted (Trace), apparent diffusion coefficient (ADC), Fluid-Attenuated Inversion Recovery (FLAIR), and T1-weighted (T1w) images acquired in 904 acute/subacute ischemic stroke patients and in 6,230 healthy controls and patients with other brain pathologies to assess if GAMER MRI could produce clinically meaningful importance orders in two different classification scenarios. In the first experiment, GAMER MRI with a pretrained convolutional neural network (CNN) was used in conjunction with Trace, ADC, and FLAIR to distinguish patients with ischemic stroke from those with other pathologies and healthy controls. In the second experiment, GAMER MRI with a patch-based CNN used Trace, ADC and T1w to differentiate acute ischemic stroke lesions from healthy tissue. The last experiment explored the performance of patch-based CNN with GAMER MRI in ranking the importance of quantitative MRI measures to distinguish two groups of lesions with different pathological characteristics and unknown quantitative MR features. Specifically, GAMER MRI was applied to assess the relative importance of the myelin water fraction (MWF), quantitative susceptibility mapping (QSM), T1 relaxometry map (qT1), and neurite density index (NDI) in distinguishing 750 juxtacortical lesions from 242 periventricular lesions in 47 MS patients. Pair-wise permutation t-tests were used to evaluate the differences between the AWs obtained for each quantitative measure. In the first experiment, we achieved a mean test AUC of 0.881 and the obtained AWs of FLAIR and the sum of AWs of Trace and ADC were 0.11 and 0.89, respectively, as expected based on previous knowledge. In the second experiment, we achieved a mean test F1 score of 0.895 and a mean AW of Trace = 0.49, of ADC = 0.28, and of T1w = 0.23, thereby confirming the findings of the first experiment. In the third experiment, MS lesion classification achieved test balanced accuracy = 0.777, sensitivity = 0.739, and specificity = 0.814. The mean AWs of T1map, MWF, NDI, and QSM were 0.29, 0.26, 0.24, and 0.22 (p < 0.001), respectively. This work demonstrates that the proposed GAMER MRI might be a useful method to assess the relative importance of MRI measures in neurological diseases with focal pathology. Moreover, the obtained AWs may in fact help to choose the best combination of MR contrasts for a specific classification problem
    corecore