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Knee ligaments are elastic bands of soft tissue with a complex microstructure and bio-
mechanics, which are critical to determine the kinematics as well as the stress bearing
behavior of the knee joint. Their correct implementation in terms of material models and
properties is therefore necessary in the development of finite element models of the knee,
which has been performed for decades for the investigation of both its basic biomechanics
and the development of replacement implants and repair strategies for degenerative and
traumatic pathologies. Indeed, a wide range of element types and material models has
been used to represent knee ligaments, ranging from elastic unidimensional elements to
complex hyperelastic three-dimensional structures with anatomically realistic shapes.This
paper systematically reviews literature studies, which described finite element models of
the knee, and summarizes the approaches, which have been used to model the ligaments
highlighting their strengths and weaknesses.

Keywords: knee ligaments, finite element, material models, anisotropy, non-linearity, anterior cruciate ligament

INTRODUCTION
Numerical methods have been used for decades for the simulation
of the biomechanical behavior of the knee joint. Starting from the
earliest analytical or numerical models solved by in-house com-
puter programs (Crowninshield et al., 1976; Wismans et al., 1980;
Hefzy and Grood, 1983), the complexity of the kinematics and of
the capacity of the knee joint to withstand high loads while allow-
ing for a high mobility of the joint have always challenged and
fascinated the scientific community. Modern finite element mod-
els are usually based on magnetic resonance imaging (MRI) and/or
computed tomography (CT) scans and possess a high degree of
anatomical realism (e.g., Pena et al., 2006; Kazemi and Li, 2014).
Besides the simulation of the intact joint, models are widely used
for the prediction of the effects of degenerative pathologies, trau-
matic events as well as surgical repair and replacement strategies
(e.g., Yoon et al., 2010; Fitzpatrick et al., 2014; Innocenti et al.,
2014).

Although the geometrical accuracy of the three-dimensional
reconstruction, which can be achieved relatively easily, the devel-
opment of an accurate finite element model of the knee joint is
still a complex task. The ligaments of the knee are among the most
complicated structures to simulate and at the same time most
critical in determining the biomechanics of the joint. Indeed, liga-
ments have peculiar mechanical characteristics (described in detail
below), which present technical challenges to researchers. Further-
more, valid and trusted values of the material properties obtained
with experimental mechanical testing are needed in order to have
a realistic response of the joint as predicted by the numerical
models.

A wide range of different approaches to these challenges has
been presented in the literature, and is the subject of the present
review. After a summary of the main anatomical and biomechani-
cal properties of the knee ligaments, we present a systematic review
of the literature aimed to cover: (1) the type of elements, which
have been used to simulate the knee ligaments; (2) the constitutive
material laws employed in published studies; and (3) the original
data sources, e.g., from in vitro mechanical testing of isolated lig-
aments, which have been used in the development and validation
of the models.

FUNCTIONAL ANATOMY AND BIOMECHANICS OF THE KNEE
LIGAMENTS
Similar to other biological soft tissues, the ligaments of the knee
(Figure 1) and other articular joints are constituted by a water-
rich ground substance reinforced with collagen fibers (Daniel
et al., 1990). The ground substance contains proteoglycans, which
together with hyaluronic acid are able to attract water from the
external environment, creating a kind of gel (Daniel et al., 1990).
The capability of the matrix to capture water molecules and there-
fore to maintain a high water content even when stretched, results
in the assumption of incompressibility of the tissue, which is incor-
porated in most constitutive models (Weiss and Gardiner, 2001;
Weiss et al., 2005).

The matrix also contains a moderate number of fibroblasts,
which are responsible for synthesizing collagen molecules, and
constitute the fibers providing the tensional stiffness and resistance
to the tissue (Nimni, 1983). The collagen skeleton of ligaments is
a hierarchical structure, which includes microfibrils organized in
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Galbusera et al. Finite element analysis of knee ligaments

FIGURE 1 | Schematic representation of the anatomy of the knee joint,
depicting the ligaments (ACL, anterior cruciate ligament; PCL,
posterior cruciate ligament; MCL, medial collateral ligament; LCL,
lateral collateral ligament). Articular cartilage is shown in gray. Alternative
names commonly used for the patellofemoral and patellar ligaments are
reported in brackets. Schematic representations of 1D (springs, trusses,
and beams), 2D (shell and membrane), and 3D elements (solid) used to
model the knee ligaments are shown.

fibrils or fascicles. In the unloaded configurations, collagen fib-
rils are crimped, i.e., arranged in a helical or waveform pattern
(Diamant et al., 1972; Comninou and Yannas, 1976). When the
ligament is stretched, the crimping progressively disappears as the
fibrils become aligned with the loading direction. This structure
gives the ligament a characteristic force–elongation curve, which
can be subdivided in two zones: (1) a toe region with low stiffness
and non-linear response, in which the fibrils lose their crimping;
(2) a higher stiffness region in which the curve is almost linear,
which corresponds to the stretching of the collagen fibrils (Trent
et al., 1976; Weiss and Gardiner, 2001) (Figure 2). This behavior
is well represented by the constitutive models, which were devel-
oped for the numerical simulation of the biomechanics of the knee
joint, which are described below.

REVIEW METHODS
A Pubmed search with keywords “finite element” and “knee” was
performed. The retrieved abstracts were then screened in order to
determine, which papers were fulfilling the following inclusion cri-
teria: (1) the paper describes a finite element model of the human
lower limb, of the knee or of isolated knee ligaments; (2) the paper
reports the material properties assigned to the knee ligaments or
at least a reference to a literature source. Precedence was given
to models of the entire knee joint and not on isolated ligaments;
however, the latter papers were not excluded if retrieved by the
aforementioned Pubmed search. Multibody models (i.e., based on

FIGURE 2 | Force–strain behavior of a generic ligament following the
model described by Blankevoort et al. (1991a). 2εl is the threshold strain,
which indicates the change from the toe to the linear regions.

rigid body dynamics) were not considered if not referenced by
other finite element studies, for the sake of simplicity. When nec-
essary, the full text of the retrieved papers was also screened. The
reference lists of the papers were then analyzed in order to retrieve
additional relevant papers, which had not been identified by the
Pubmed search. The results of this systematic search were then sub-
divided into those showing a one-dimensional (1D) model of the
knee ligaments, and those reporting two-dimensional (2D, surface
elements), or three-dimensional (3D, solid elements) models.

Subsequently, the literature search was deepened in order to
identify the original sources of the material properties, either based
on assumptions, in vitro or in vivo measurements. Citation graphs
tracking the origin of the material property values were created,
specifically for the 1D and for the 2D–3D models (Figures 3 and 4).

RESULTS OF THE LITERATURE REVIEW
The first Pubmed search retrieved 650 items. After screening,
69 relevant papers were selected. The analysis of the references
returned nine additional relevant papers. Several papers used
values of the material properties retrieved from other modeling
studies, and did not provide citations to the original data sources.
Based on the detailed analysis of the literature, 18 papers reporting
in vitro data about mechanical testing of the knee ligaments were
identified as the original sources of the material properties. For
the sake of clarity, the retrieved studies were subdivided in papers
using 1D elements to represent the knee ligaments and those using
elements with higher dimensionality (2D, 3D).

1D MODELS
Line elements such as springs, trusses, and beams are frequently
used to model the mechanical role of the ligaments in the knee
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Galbusera et al. Finite element analysis of knee ligaments

FIGURE 3 | Citation chart showing the sources of each paper retrieved in
the literature using 1D elements to represent the knee ligaments. Arrows
indicate the papers used as reference for the material properties of the
ligaments. Studies including in vitro data are highlighted with an oval border.
For the sake of brevity, only the name of the first author is shown. References
not reported in the main text: Abdel-Rahman and Hefzy, 1998; Adouni and
Shirazi-Adl, 2013; Adouni and Shirazi-Adl, 2014; Adouni et al., 2012; Andriacchi
et al., 1983; Arsene and Gabrys, 2013; Beillas et al., 2004; Blankevoort and
Huiskes, 1996; Blankevoort et al., 1991c; Cooper et al., 1993; Danylchuk,

1975; DeFrate et al., 2004; Donahue et al., 2002; Essinger et al., 1989; Grood
and Hefzy, 1982; Guess et al., 2010; Harner et al., 2000; Haut and Haut, 1997;
Haut Donahue et al., 2003; Innocenti et al., 2011; Li et al., 1999; Marouane
et al., 2014; Mesfar and Shirazi-Adl, 2006a; Mesfar and Shirazi-Adl, 2006b;
Mesfar and Shirazi-Adl, 2008; Moglo and Shirazi-Adl, 2003a; Moglo and
Shirazi-Adl, 2003b; Moglo and Shirazi-Adl, 2005; Noyes et al., 1984; Perie and
Hobatho, 1998; Pianigiani et al., 2012; Robinson et al., 2005; Shelburne and
Pandy, 1997; Shirazi and Shirazi-Adl, 2009; Shirazi et al., 2008; Shirazi-Adl and
Mesfar, 2007; Stylianou et al., 2013.

joint (Figure 1). Bundles of line elements, which cover approxi-
mately the insertion areas of the ligaments are the most common
solution (e.g., Bendjaballah et al., 1995), but single elements to
describe each ligamental bundle were also used (Yu et al., 2001).
The first mechanical tests conducted in the 70s (Girgis et al., 1975;

Trent et al., 1976) showed a clear non-linearity of the force–
elongation curves of all knee ligaments. Based on these observa-
tions, early numerical models of the knee joint used elements able
to represent non-linear force–strain or force–elongation behav-
iors, e.g., quadratic (Wismans et al., 1980) or quadratic in the
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Galbusera et al. Finite element analysis of knee ligaments

FIGURE 4 | Citation chart showing the sources of each paper retrieved in
the literature using 2D and 3D elements to represent the knee ligaments.
Arrows indicate the papers used as reference for the material properties of
the ligaments. Studies including in vitro data are highlighted with an oval
border. For the sake of brevity, only the name of the first author is shown.

References not reported in the main text: Amis et al., 2006; Atarod et al.,
2013; Bonifasi-Lista et al., 2005; Butler et al., 1990; Dhaher et al., 2010;
Hansen et al., 2006; Hirokawa and Tsuruno, 1997; Johnson et al., 1994;
Louis-Ugbo et al., 2004; Mesfar and Shirazi-Adl, 2006a; Park et al., 2010;
Pioletti et al., 1996; Ren et al., 2010; Subit et al., 2009; Wang et al., 2014.

toe region and linear afterward (Blankevoort et al., 1991a). This
behavior can be formulated as follows (Figure 2):

f = 1
4 k ε2

εl
, 0 ≤ ε ≤ 2εl

f = k (ε− εl) , ε > 2εl

f = 0, ε < 0

(1)

where f is the axial force sustained by the ligament, k is a stiffness
parameter, ε is the strain, and 2εl is the threshold strain, which
indicates the change from the toe to the linear regions. In both
cases, the elements representing the ligaments were able to sus-
tain only tensile loads, and offered no resistance to compression
or shear. In some papers (Yu et al., 2001; Checa et al., 2008), the
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Galbusera et al. Finite element analysis of knee ligaments

force–strain behavior expressed in Eq. 1 has been modified as
follows:

f = k1(L − L0)
2, 0 ≤ ε ≤ 2εl

f = k2 (L − (1+ εl) L0) , ε > 2εl

f = 0, ε < 0
(2)

where L is the current length of the ligament, L0 is its slack length,
and k1 and k2 are two stiffness parameters describing the toe and
the linear regions, respectively. Linearized forms of Eqs 2 were also
used (Shin et al., 2007):

f = kl
2 (L − L0) , 0 ≤ ε ≤ 2εl

f = kl (L − (1+ εl) L0) , ε > 2εl

f = 0, ε < 0
(3)

where kl is a linear stiffness parameter. Care should be taken in the
comparison of the stiffness parameters k, k1, and k2 and k l since
they are expressed in different units.

These formulations are still widely used to model the ligaments
in 1D (Table 1). It should be noted that the values of the material
properties listed in Table 1 show considerable variability, espe-
cially regarding the reference strain. In some cases, the authors
only stated the use of non-linear elements without any additional
information on the constitutive equations (Shin et al., 2009; Yoon
et al., 2010). In contrast, the use of linear 1D elements appears to
be very limited in simulation studies (Shin et al., 2007; Innocenti
et al., 2014; Steinbruck et al., 2014).

Knee extension is usually considered as the reference state from
which different motions can be simulated. In this state, the liga-
ments are strained and therefore already sustaining a tensile load
(Daniel et al., 1990). Reference strains, also called pre-strains, are
difficult to estimate experimentally, and assumptions were often
made in order to circumvent this problem and to correctly sim-
ulate the initial state of knee extension (Wismans et al., 1980).
Blankevoort et al. (1991a) used an iterative approach in order to
minimize the differences between the predicted and experimen-
tally measured flexion motions by altering the values of the refer-
ence strains of the ligaments. These data were used as a reference in
a whole series of papers published by the École Polytechnique de
Montréal (e.g., Mesfar and Shirazi-Adl, 2005). Another approach
based on optimization to fit in vitro results was used by Baldwin
et al. (2012) and served as basis for subsequent papers by the same
research group (Fitzpatrick et al., 2012, 2013, 2014). Experimental
measurements and sensitivity analyses about the reference strains
were also performed (Bertozzi et al., 2007; Bloemker et al., 2012).

The ligaments of the knee do not only exert forces on the
insertion areas in the direction connecting the insertion and ori-
gin, but exhibit wrapping behavior between themselves [anterior
cruciate ligament (ACL) and posterior cruciate ligament (PCL)]
or with bones [medial collateral ligament (MCL) with tibia and
MCL with femur]. This behavior limits the accuracy of simple
line elements to model these three ligaments if special techniques
to simulate wrapping are not employed. Based on the analytical
model proposed by Hefzy and Grood (1983), Blankevoort and
Huiskes (1991b) first integrated the simulation of the MCL–tibia
wrapping in a finite element model. The tibial surface was mod-
eled as a curve in space upon which a moving contact point with

the MCL was defined. The MCL was then divided into two line
elements passing through the contact point. Similar approaches
were used afterward (Bendjaballah et al., 1997, 1998), but the vast
majority of papers employing 1D elements to model the ligaments
neglected this phenomenon. In some specific cases in which wrap-
ping markedly changes the force distribution and direction (e.g.,
when the valgus laxity is of interest), this limitation may signifi-
cantly limit the accuracy of the results. However, the general effect
of neglecting ligament wrapping was estimated to be not dramatic
in other cases (Blankevoort and Huiskes, 1991b).

During the literature search and review, 14 in vitro papers were
identified as reference for the material properties of the knee lig-
aments (Figure 3). The series of papers from the group of Butler
and coworkers (Noyes and Grood, 1976; Butler et al., 1984, 1985,
1986) and the more recent paper by Race and Amis (1994) are
worthy of note. Experimental data about the cruciate and col-
lateral ligaments were also published by another research group
(Woo et al., 1986, 1991; Harner et al., 1995, 2001). Experimental
sources often cited were also Atkinson et al. (2000) and Staubli
et al. (1999) regarding the patellar and patellofemoral ligaments.

It should be noted that in many finite element papers, the values
of the material properties were retrieved from previous numeri-
cal studies, without direct references to experimental studies. A
preference toward source papers, which explicitly showed values
of the stiffness parameters and reference strain of the ligaments
(such as Wismans et al., 1980 and Blankevoort et al., 1991a), is
clearly seen in Figure 3. As a matter of fact, these studies refer to
a small set of old experimental tests, which were shown already
by Blankevoort et al. (1991a) to be rather inconsistent or inaccu-
rate. Besides, values of the material properties used in previous
models showed considerable variability (Table 1), thus making
further questionable the model predictions and the comparability
of data obtained with different models. We therefore recommend
that authors of numerical models of the knee concentrating on
the ligaments should not only focus on a single source of data, but
perform a wider literature search as well and take into considera-
tion also newer experimental datasets such as e.g., those reported
by Race and Amis (1994) and Harner et al. (1995). It should be
noted that the use of consolidated and valid sources for the mate-
rial properties does not eliminate the need for a proper model
validation.

2D–3D MODELS
The most intuitive way to include the ligaments in a 3D model
of the knee is by using solid elements (Figure 1). Indeed, MRI
scans in combination with 3D reconstruction software offer an
accessible way to create detailed models of the joint including the
geometry of the ligaments as well as their insertion sites for the
specific patient. MRI scans can also be easily combined with CT,
which offers high resolution imaging of the bony structures, by
means of registration software. This approach also facilitates the
simulation of ligament wrapping by the use of surface-to-surface
contact, which is implemented in most free and commercial finite
element packages. The accuracy of the simulation of stresses that
are not purely tensional, such as those arising due to contact with
bone and those close to the insertion areas, is also improved (Weiss
and Gardiner, 2001).
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Galbusera et al. Finite element analysis of knee ligaments

Table 1 | Material properties used to model the non-linear behavior of the ACL and PCL with non-linear 1D elements.

ACL PCL Eq. Reference

Stiffness εL ε0 Stiffness εL ε0

aAC: k =5000 N 0.03 aAC: 0.06 aPC: 9000 N 0.03 aPC: 0.24 (1) Blankevoort et al. (1991a), Bloemker

et al. (2012), Guess and Stylianou

(2012)

pAC: k =5000 N pAC: 0.10 pPC: 9000 N pPC: 0.03

k =5000 N 0.03 aAC: 0.16 k =9000 N 0.03 aPC: −0.068 (1) Amiri and Wilson (2012)

mAC: 0.10 mPC: −0.169

pAC: 0.10 pPC: −0.169

Toe region: 0.03 aAC: 0 Toe region: 0.03 aPC: 0.004 (2) Yu et al. (2001), Checa et al. (2008)

aAC: k1=22.48 N/mm2 pAC: 0.051 aAC: k1=31.26 N/mm2 pPC: 0.05

pAC: k1=26.27 N/mm2 pAC: k1=19.29 N/mm2

Linear region: Linear region:

aAC: k2=83.15 N/mm2 aAC: k2=125 N/mm2

pAC: k2=83.15 N/mm2 pAC: k2=60 N/mm2

aAC: k l=108 N/mm 0.03 aAC: 0.02 aAC: k l=125 N/mm 0.03 aPC: −0.10 (3) Shin et al. (2007), Steinbruck et al.

(2014)pAC: k l=108 N/mm pAC: 0.02 pAC: k l=60 N/mm pPC: −0.02

“Stiffness” indicates the stiffness parameter used in the relevant equations; “Eq.” indicates which force–strain equations were used, as described in the paper (Eqs

1–3). Other abbreviations: aAC, anterior bundle of the ACL; mAC, middle bundle; pAC, posterior bundle; aPC, anterior bundle of the PCL; mPC, middle bundle; pPC,

posterior bundle; εL, threshold strain, see Eqs 1 and 2; ε0, reference strain.

However, ligaments have a peculiar mechanical behavior, being
strongly anisotropic and not able to sustain compression, which
makes their simulation with solid elements less attractive if com-
pared to line elements. The pre-strain in the reference state is
also more challenging to be simulated using solid elements. One
approach in between, which combines the ease of implementation
of the 1D elements and the anatomical realism of the 3D elements,
is to embed springs or trusses in a 3D matrix having a simple
constitutive law, such as linear isotropic elasticity or neo-Hooke
hyperelasticity. This approach was used in some previous studies,
especially employing 2D (surface) elements such as shells or mem-
branes reinforced with non-linear line elements to accomplish the
anisotropy of the ligaments (Halloran et al., 2005; Baldwin et al.,
2009; Zelle et al., 2009a,b, 2010, 2014; Clary et al., 2013).

Simple continuum material models that do not take into
account the anisotropy of the ligamentous tissue, namely hypere-
lastic neo-Hooke (Mootanah et al., 2014) or Mooney–Rivlin mate-
rials (Liu and Zhang, 2013) were also used. However, anisotropic
hyperelastic continuum models are more often employed. Only
one paper (Westermann et al., 2013) employed an anisotropic
hyperelastic model directly available in a finite element package,
the Holzapfel–Gasser–Ogden model (Holzapfel et al., 2000; Gasser
et al., 2006) implemented in ABAQUS (Simulia, Providence,
RI, USA).

Constitutive models were also purposely developed to model
biological soft tissues. The Veronda–Westmann model published
in 1970 (Veronda and Westmann, 1970) provides an exponential
stress–strain relationship and is conveniently available in open-
source finite element software FEBio (Maas et al., 2012), but is
limited to the isotropic behavior in its conventional formulation.
This model was implemented in MARC (MSC Software, Newport

Beach, CA, USA) for the simulation of the ACL (Song et al.,
2004).

Pioletti and coworkers (Pioletti et al., 1998a,b; Pioletti and
Rakotomanana, 2000) developed a hyperelastic, incompressible,
and viscoelastic isotropic law, which was used in following works
of the group (Ramaniraka et al., 2005, 2007). In this formula-
tion, the elastic part is based on the isotropic Veronda–Westmann
material law and the novelty is mainly constituted by the viscous
behavior. However, in two papers (Ramaniraka et al., 2007 and
Ramaniraka et al., 2005) this constitutive law was used to per-
form static analyses, and therefore did not exploit its viscoelastic
capabilities.

A model which was widely used in the following publications
was presented by Weiss et al. (1996), and describes an incompress-
ible, fiber-reinforced material able to simulate large displacements.
This material model was designed to closely fit the response of the
biological soft tissues, especially ligaments, based on experimen-
tal data (Quapp and Weiss, 1998). Within this model, pre-strain
was also simulated by the same group (Gardiner and Weiss, 2003)
by performing an initial unloaded step to search for the refer-
ence configuration. The material model is available in FEBio in
two forms, in which the matrix is either a Mooney–Rivlin or a
Veronda–Westmann material. Peña and coworkers implemented
the same model in ABAQUS by means of a Fortran user subroutine
(UMAT) (Pena et al., 2005, 2006). A similar material formulation
expanded to incorporate fluid flow (poroelasticity) and viscoelas-
ticity was implemented in ABAQUS by Kazemi and coworkers
(Kazemi et al., 2011; Kazemi and Li, 2014) by means of a UMAT
and was used to investigate the creep behavior of the knee joint.
Limbert et al. (2004) focused their attention to the possibility of
simulating pre-strain in a ligament, and developed an anisotropic,
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fiber-reinforced incompressible hyperelastic material formulation
in which an additional load step to calculate the reference config-
uration due to pre-strain is not necessary. To our knowledge, this
material model has not yet been employed in other studies.

The analysis of the data sources used for the choice of the values
of the material properties for 3D models showed similar results to
those for the 1D models (Figure 4). Experimental sources (e.g.
Butler et al., 1986; Woo et al., 1991; Race and Amis, 1994; Quapp
and Weiss, 1998) were widely cited. The research group of Pioletti
and coworkers (Pioletti, 1997; Pioletti and Rakotomanana, 2000)
presented additional in vitro results, which have been widely used
not only by the same group, but also in other papers (Limbert
et al., 2004; Zelle et al., 2009a, 2010) to provide experimental evi-
dence. With respect to previous data, these experimental tests also
provided time-dependent results obtained at different strain rates,
which would be useful in the implementation of dynamic models
of the knee. In contrast to the 1D models, key references cited by a
high number of papers (such as Wismans et al., 1980; Blankevoort
et al., 1991a) could not be identified.

CHOICE OF APPROPRIATE ELEMENTS AND MATERIAL
MODELS
The approaches used to simulate the mechanical behavior and role
of the ligaments of the knee range from very simple (e.g. linear
beams and springs) to complex models (e.g., anisotropic hypere-
lastic 3D materials, or biphasic formulations). The user planning
to develop a computational model of the knee has therefore a
wide range of possible choices, which should be evaluated accord-
ing to the research questions and the desired applications of the
model.

Weiss and Gardiner (2001) distinguished between microstruc-
tural models, which represent the mechanical role of each com-
ponent of the ligamentous tissue, and phenomenological models,
which simulate the global material behavior without directly refer-
ring to the tissue composition, therefore without a direct physical
interpretation. The latter models are the focus of the present
paper, and are the solution of choice for most models aimed to
study the knee kinematics and load bearing, total or partial knee
replacements, meniscus, and even ligament reconstruction and
grafting.

Line elements have the distinct advantages of an easy imple-
mentation, a low computational cost and the possibility to exactly
replicate non-linear force–elongation curves from experimental
tests as well as pre-strain. Viscoelastic behavior can be also easily
modeled, if required. As mentioned above, disadvantages include
the lack of information about the behavior in the transverse
plane and the need for special techniques to simulate ligament
wrapping. Nevertheless, non-linear 1D elements are still a rec-
ommended choice and a commonly used method for the simu-
lation of the global behavior of the knee and for total as well as
unicompartmental knee replacements.

Solid elements offer a better anatomical realism and overcome
the limitations in the simulation of wrapping. Besides, they have
the potential to predict quantities not accessible with the used
of 1D elements such as local strains and accurate load trans-
fer between ligaments and surrounding tissues, which may be of
interest for specific applications. However, their inherent higher

complexity may lead to high computational costs, difficulties in
the validation and evaluation of the results, and in some cases
to the use of oversimplified material constitutive models, which
should be avoided. We recommend their use only when the focus
of the study is the biomechanics of the ligament itself, its inter-
action with the surrounding tissues or other complex research
questions in which a correct 3D representation of the behavior of
the ligament is required in order to obtain an accurate answer. It
should be noted that, depending on the specific application, other
anatomical structures such as menisci and articular cartilage may
have a high significance in the determination of the results, and
should therefore be modeled and validated properly.

VERIFICATION AND VALIDATION
Two key aspects for the development of numerical models of artic-
ular joints such as the knee are the verification and the validation.
Even if these terms are sometimes used with similar meanings,
as effectively synthesized by Roarche (1998) and Viceconti et al.
(2005), verification is about solving the equations right, and vali-
dation is about solving the right equations. For the specific case of
biomechanical simulation of the knee joint with commercial finite
element software, verification is usually limited to the choice of an
appropriate mesh density, the plausibility analysis of the solution
of the contact problems and the check of the convergence of the
iterative solution.

Validation is mostly performed by comparison of the results
with controlled in vitro experiments. Experimental set-ups like the
Oxford rig (Zavatsky, 1997) or the Kansas Knee Simulator (Malet-
sky and Hillberry, 2005) allow for the application of physiological
loads and motions, and for the measurement of the resulting
kinematics, which can then be compared with the numerical pre-
dictions. However, these experimental methods do not offer easy
access to local variables such as strains in the ligaments, and there-
fore allow only for a partial validation of the numerical models.
The use of sophisticated sensors such as differential variable reluc-
tance transducers (DVRTs) (e.g., in Withrow et al., 2006) or optical
strain measurements (e.g., in Freutel et al., 2014) offer a par-
tial solution to this limitation, at the price of a higher level of
complexity of the experimental set-up.

An alternative, indirect way to perform validation is by com-
parison with available data, such as data from literature or from
previous experiments (Henninger et al., 2010). In this case, the
user has no direct control on the experiments and on their quality
and degree of variability. For this reason, validation against pur-
posely performed experiments is generally preferred to indirect
validation (Henninger et al., 2010).

Similarly to the choice of the most appropriate constitutive
model described above, the design of a correct validation proce-
dure is mainly based on the scope of the desired applications and
on the output variables of interest (Viceconti et al., 2005; Hen-
ninger et al., 2010). For example, if the aim of the study is the
evaluation of the kinematics of a total knee replacement, a com-
parison of the predictions with experimental kinematical data may
be sufficient. However, a model validated in such a way would not
be adequate for the evaluation of local strains in the MCL, which
would require a model specifically validated for the mechanical
behavior of the single ligament.
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FUTURE DEVELOPMENTS
A number of topics concerning the biomechanics of the knee
ligaments remain poorly understood. Fluid flow during defor-
mation of the ligaments is one of these. Following the studies of
the transient mechanics and mechanobiology of the interverte-
bral disk (e.g., Schroeder et al., 2006), models including osmotic
swelling due to the presence of proteoglycans would allow for a
more accurate prediction of their time-dependent response and
the overcoming of the incompressibility assumption. However,
experimental data about permeability for the ligamentous tissue
is actually lacking (Weiss et al., 2005).

Another aspect which is poorly investigated is the simulation
of ligament failure and injury. With current commercial software,
anatomically realistic 3D models able to accurately simulate local
strains could be easily enriched in order to predict crack initiation
and propagation by the use of extended finite element methods
(XFEM) (Moës et al., 1999). However, data available about liga-
ment failure only concern uniaxial tension along the main axis of
the ligament, and are therefore not sufficient for the development
of adequate failure criteria to be implemented with XFEM (Weiss
et al., 2005).

CONCLUSION
The use of numerical models for the biomechanical simulation of
the knee joint in healthy and pathological conditions and following
repair surgeries or implantation of prostheses appears to be wide
and consolidated. The ligaments, especially ACL and PCL, have
been the focus of studies from the earliest models onward (e.g.,
Wismans et al., 1980) due to their high biomechanical impor-
tance in both knee kinematics and load bearing. The increase in
computational power of modern computers and the wide avail-
ability of advanced non-linear finite element packages, including
software free of charge for academic use (e.g., FEBio) will likely
broaden the use of 3D elements for the ligaments with respect
to 1D solutions. We recommend the authors to consider all the
unique aspects of the biomechanics of the ligaments, such as
non-linearity, anisotropy, pre-strain, and wrapping, and to select
the most appropriate modeling approach based on the specific
application, especially when 3D elements are used.
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