45 research outputs found

    Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia

    Full text link
    The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics

    Genetic dissection of the glutamatergic neuron system in cerebral cortex.

    Get PDF
    Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels

    Cellular anatomy of the mouse primary motor cortex.

    Get PDF
    An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Inhibition of Tetrodotoxin-Resistant Sodium Current in Dorsal Root Ganglia Neurons Mediated by D1/D5 Dopamine Receptors

    Get PDF
    BACKGROUND: Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. RESULTS: The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. CONCLUSIONS: We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli

    Transcriptomic evidence of a para-inflammatory state in the middle aged lumbar spinal cord

    No full text
    Abstract Background We have previously reported elevated expression of multiple pro-inflammatory markers in the lumbar spinal cord (LSC) of middle-aged male rats compared to young adults suggesting a para-inflammatory state develops in the LSC by middle age, a time that in humans is associated with the greatest pain prevalence and persistence. The goal of the current study was to examine the transcriptome-wide gene expression differences between young and middle aged LSC. Methods Young (3 month) and middle-aged (17 month) naïve Fisher 344 rats (n = 5 per group) were euthanized, perfused with heparinized saline, and the LSC were removed. Results ~70% of 31,000 coding sequences were detected. After normalization, ~ 1100 showed statistically significant differential expression. Of these genes, 353 middle-aged annotated genes differed by > 1.5 fold compared to the young group. Nearly 10% of these genes belonged to the microglial sensome. Analysis of this subset revealed that the principal age-related differential pathways populated are complement, pattern recognition receptors, OX40, and various T cell regulatory pathways consistent with microglial priming and T cell invasion and modulation. Many of these pathways substantially overlap those previously identified in studies of LSC of young animals with chronic inflammatory or neuropathic pain. Conclusions Up-modulation of complement pathway, microglial priming and activation, and T cell/antigen-presenting cell communication in healthy middle-aged LSC was found. Taken together with our previous work, the results support our conclusion that an incipient or para-inflammatory state develops in the LSC in healthy middle-aged adults

    Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types and cortical subnetworks

    No full text
    Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, which are rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) mediated by radial glial progenitors and intermediate progenitors, respectively. How dNG and iNG differentially contribute to cortical neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex compared to insular and piriform cortex, claustrum, and the pallial amygdala. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two neurogenic pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types

    Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age

    Get PDF
    <div><p>Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not affect the establishment of neuropathic pain.</p></div

    Gene Expression Profile of Young and Middle-Aged Sham and CCI LSC.

    No full text
    <p>LSC ipsilateral hemisections were removed on day 7. Expression levels in LSC samples were normalized to the geomean of Hprt1 and Pplb expression and the ratios multiplied by 100 and presented as the mean ratios +/- SD. Two-way ANOVA results are shown with contrasts and associated p values. Numbers of animals (n) assayed per group are shown. Bolded/italicized genes indicate specific contrast differences p < 0.05</p><p>* indicates difference trending to significance. YS = young sham, YCCI = young CCI, MS = middle-aged sham, MCCI = middle-aged CCI.</p><p>Gene Expression Profile of Young and Middle-Aged Sham and CCI LSC.</p

    Levels of Iba1 protein expression in young and middle-aged sham and post-CCI day 7 lumbar spinal cords.

    No full text
    <p>Results were obtained for each sample (n = 3 per age group). A) immunoblots of lumbar spinal cord hemisection samples from naïve animals (Top), and samples ipsilateral to injury (Bottom), were probed with antibodies against the microglial marker Iba1 and house keeping enzyme GAPDH (loading control). B) Results are expressed as the mean ratios Iba1/GAPDH intensities +/- SD; significance YN v MN (*p = 0.0120), left panel, YS v YCCI (**p = 0.0006), YS v MS (*p = 0.0121) and MS v MCCI (p = 0.3500), right panel.</p
    corecore