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RESEARCH ARTICLE

Neuroimmune and Neuropathic Responses
of Spinal Cord and Dorsal Root Ganglia in
Middle Age
William Galbavy, Martin Kaczocha, Michelino Puopolo, Lixin Liu, Mario J. Rebecchi*

Department of Anesthesiology, Stony Brook University, Stony Brook, New York, United States of America

* Mario.Rebecchi@stonybrookmedicine.edu

Abstract
Prior studies of aging and neuropathic injury have focused on senescent animals compared

to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG),

have remained largely unexplored. 14 neuroimmune mRNAmarkers, previously associated

with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord

(LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats sub-

jected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-

matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2,

ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged

animals compared to young adults. Similarly, LSC samples from older sham animals

showed increased levels of T-cell and microglial/macrophage markers. CCI induced further

increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-

aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve

or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, simi-

lar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve

DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP pro-

tein, localized to satellite glia, were highly elevated in middle age, but independent of nerve

injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet

middle-aged animals showed little response to injury. No age-related changes in nocicep-

tion (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The

patterns of marker expression and microglial morphologies in healthy middle age are con-

sistent with development of a para-inflammatory state involving microglial activation and T-

cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in

the DRG. These changes, however, did not affect the establishment of neuropathic pain.

Introduction
Normal healthy aging is associated with neuroimmune changes that have been referred to as
“inflammaging”, an elevation of inflammatory tone with age that may contribute to the aging
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process itself, as well as enhance susceptibility to neurodegeneration [1–5]. As a result, an
incipient or para-inflammatory state is thought to develop that predisposes the senescent CNS
to deleterious neurotoxic responses following injury or infection or stress. A large body of evi-
dence now supports this idea. For example, multiple inflammatory markers increase with age
in various brain regions of healthy rats, mice, and primates [5–7], particularly the pro-inflam-
matory cytokines interleukin 1β (IL1β), tumor necrosis factor α (TNFα) and interleukin 6
(IL6), as well as microglial activation markers, Cd11b (Ox42, C3A receptor) and MHCII
(major histocompatibility complex II), and the astrogliosis marker, glial fibrillary acidic protein
(GFAP); moreover, challenging the senescent CNS with lipopolysaccharide (LPS) or with
mechanical injury induces exaggerated neuroinflammatory responses, exacerbates decline, and
delays functional recovery [6–9]. Furthermore, neuroimmune profiles of healthy aged and dis-
eased brains suggest that early para-inflammatory changes, particularly activation of microglia
[10], may contribute to neurodegenerative disorders, such as Alzheimer’s dementia [11, 12]
and Parkinson’s disease [13].

In contrast to the extensive work on the aging mammalian brain, relatively few reports have
examined inflammatory markers in the aging spinal cord in healthy or nerve-injured subjects.
Early work showed some differences in the numbers of Ox42+ (CD11b) microglia in lumbar
spinal cord (LSC) from healthy young and middle-aged adults, whereas senescent adults had
greater numbers and staining intensities of activated microglia [14]. Similarly, sections of spi-
nal cords and brainstems from healthy senescent rats showed increased CD11b and ED1
(CD68) immunoreactivity in microglia, and GFAP in astrocytes compared to young adults
[15]. Many of these CD68-positive microglia were hypertrophic with short stout processes,
many were localized to the white matter, and these were found at higher levels in senescent ani-
mals with severe sensorimotor deficits. While it has been reported that sciatic nerve injury
increases the numbers of CD11b-positive microglia in both young and middle-aged LSC, this
increase was attenuated in senescent animals [14, 16]. In canine spinal cord, increased numbers
of Iba1-positive microglia with “activated”morphology have been found in lumbar and cervi-
cal cords of older (10–12 years) compared to young adults (1–2 years)[17]. Taken together,
these studies demonstrate age-related changes in spinal cord microglia and astrocytes that are
consistent with inflammaging and that could lead to exaggerated responses and/or to delayed
recovery following nerve injury. Indeed, increased sensitivities to noxious heat [18–20], and
increased mechanical allodynia [21] and hyperalgesia [20] have been found in older neuro-
pathic animals. Contrary to these reports, however, reduced mechanical allodynia and
decreased ongoing pain have been reported in older rats following spinal nerve ligation [22].
Nonetheless, these evoked response differences were modest, and their interpretation could be
complicated by age-related changes in sensory thresholds. On the other hand, substantial
delays in pain resolution have been consistently reported in senescent animals following nerve
injury [23–25].

Peripheral nerve injury provokes a rapid innate immune response in the DRG and spinal
cords of young adult animals [26–29]. Levels of cytokines, including IL1β, TNFα, IL6, IFNγ,
and chemokines, such as CCL2, as well as markers of activated microglia, macrophages, astro-
cytes and T-cells increase after injury. Many, for example TNFα [30], CCL2 [31, 32] and IFNγ
[33, 34], are critical for full development of neuropathic pain, and introducing each is sufficient
to mimic important aspects of pain development. Anti-inflammatory cytokines, such as IL10
and IL4, also increase, and help transform macrophages and microglia from reactive to repara-
tive and immunosuppressive phenotypes that drive development [28, 35], and possibly resolu-
tion of neuropathic pain. This body of work has led to the prevalent view that damage to
primary sensory neurons entrains glial dependent, and innate immune reactions that develop
into neuropathic pain which may resolve or remain persistent. A comprehensive examination
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of these responses in aging spinal cord and DRG following peripheral nerve injury, however, is
lacking and few studies have included animals of middle age, a time when increased prevalence
and duration of chronic pain reaches a plateau in humans [36–40]. Here we report on neu-
roimmune changes in LSC and DRG of middle-aged animals compared to young adults and
their responses to neuropathic injury.

Materials and Methods

Chronic Constriction Injury
Fisher 344 rats of 3–5 and 15–19 months of age were obtained from the NIA colony and
housed at the Division of Laboratory Animal Resources in a 12 h light/dark cycle. All work
conformed to the National Institutes of Health Guidelines for the Care and Use of Laboratory
Animals and were approved by the Stony Brook University Institutional Animal Care and Use
Committee. Animals were double-housed before surgery and single-housed after surgery,
receiving food and water ad libitum. The chronic constriction injury, or CCI model of neuro-
pathic pain, originally described by Bennett and Xie [41], was performed with slight modifica-
tion to improve reproducibility of the injury. Briefly, each animal received an intraperitoneal
injection of ketamine/xylazine (75 mg/kg and 5 mg/kg, respectively). The hind leg was shaved
and surgically prepared with 70% ethanol and Triadine, and the anesthetized animal placed
prone on a sterile towel over a heating pad. The temperature was monitored rectally. A skin
incision was made mid-thigh with a medium curved scalpel and then surgical scissors were
used to expose the sciatic nerve. Approximately 1 cm of the main trunk proximal to the trifur-
cation was isolated and 4 strands of 4–0 chromic gut were tied around the nerve ~ 1 mm apart
under magnification. In a modification of the original method, a strand of 2–0 prolene was
placed between the nerve and the gut against which the suture was tightened. The prolene
strand was then removed. This prevented over tightening and reduced occurrence of subse-
quent motor paralysis. Sham surgeries involved exposing the sciatic nerve without applying
chromic gut. The muscle layers were then re-opposed and sutured, and surgical staples were
used to close the skin. None of the animals included in our experiments exhibited signs of sig-
nificant motor paralysis.

Behavioral Measurements
All animals were habituated to the apparatuses and then subjected to evoked behavioral
responses at baseline and at 3 and 7 days, while a parallel group was measured every week
thereafter up to 35 days post-surgery. The Hargreaves test was used to assess thermal hyperal-
gesia. Briefly, plexiglass enclosures were set atop a plexiglass platform and a 200 mW, 535 nm
diode laser was mounted in an adjustable stand placed beneath the plexiglass platform, and
was used as the heat stimulus. The latency time to hind paw lift during heating of the plantar
surface was recorded. Five recordings were obtained on each hind paw with at least 2 min rest
between measurements. The maximum time for exposure to the diode laser source was 25 s to
avoid any possible tissue injury. For mechanical threshold measurements, the animal enclo-
sures rested on a screen with mesh of 0.5 cm spacing. Following acclimation, an electronic von
Frey Anesthesiometer (IITC Life Sciences) was applied with increasing static pressure to the
plantar surface of the hind paw until the animals lifted the hind paw. The number of grams of
force applied by the probe to induce withdrawal was recorded. Five recordings were obtained
on each hind paw with at least 2 min between measurements. Cold allodynia was measured as
the cumulative attention response time to the affected limb caused by evaporative cooling
using a volume (0.1ml) of acetone administered to the dorsal aspect of the hind paw.
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Perfusion, Fixation and Tissue Harvesting
At the appropriate times, rats were euthanized and transcardially perfused with heparinized
saline-buffered with 5 mMH2NaPO4 to pH 7. Ipsilateral and contralateral LSC hemi-sections,
and L4 and L5 DRG were removed and immediately frozen on dry ice. In some animals, trans-
cardial perfusion with heparinized saline was followed by 4% formaldehyde freshly prepared in
phosphate buffered saline (PBS). These in situ fixed, dissected tissues specimens were then
post-fixed for 1 h in 4% formaldehyde in PBS at room temperature before being transferred to
a solution of 30% sucrose in PBS for overnight incubation at 4°C. Fixed tissues were then
embedded in OCT medium (HistoPrep, Fisher Chemical), and frozen on dry ice. All samples
were stored at -8°C.

QuantiGene 2.0 Multiplex Assay
Total RNAs were extracted from LSC hemi-sections and lumbar DRG (L4-L5) using Qiazol
extraction, and further purified with RNeasy spin columns following the manufacturer’s direc-
tions. Briefly, frozen tissues were placed on ice, Qiazol lysis reagent (Qiagen) was added imme-
diately along with three or six 2.3 mm silica/zirconia beads (DRG and LSC, respectively), and
homogenized in a BioSpec mini bead beater for 1.5 min and allowed to stand on ice for 5 min.
Chloroform was added to comprise 1/5 of the total volume, and samples were mixed vigorously
for 2 min and allowed to settle for 2 min before being centrifuged at 12,000 X g for 15 minutes
at 4° C. The upper aqueous phase was saved, mixed 1:1 with 70% ethanol, and subjected to
RNeasy spin column purification (Qiagen). Final concentrations and 230/260/280 ratios were
determined by nanodrop absorbancy using an Eppendorf BioSpectrometer. Quantigene 2.0
Plex Assays were performed on the purified RNA’s. 10 plex and 18 plex probe sets were
designed based on previously identified key inflammatory and nerve injury related genes [33].
Assays were first shown to be linear with respect to RNA concentrations (50 To 500 ng/well)
with final assays conducted using 500 ng/well of RNA in triplicate. Two housekeeping genes
were assayed in each set (Hprt1 and Pplb), which did not change significantly with age. The
plates were read on a BioPlex 200 (Bio Rad). After subtracting background, the results were
normalized to the geomean of the two control genes for each well.

Immunoblotting
Proteins were extracted from the frozen samples with ice cold lysis buffer prepared with com-
plete EDTA-free protease inhibitor cocktail tablets (Roche Pharmaceuticals), 20 mM Tris, 150
mMNaCl, 2.5 mM Na4P2O7, 1% Nonidet P40, 0.1% SDS and 1 mM each of EDTA, NaF,
PMSF, Na3VO4, and dithiothrietol. Three or six beads (DRG and SC, respectively) of 2.3 mm
diameter Zircona/Silica (Biospec) were added to the samples that were then homogenized in a
Biospec Mini Bead Beater for one min and placed on ice (if necessary, samples were homoge-
nized again if visible particulates were still present after sitting for 3 minutes on ice). Samples
were centrifuged at 4°C at 13,000 × g for 15 min and the supernatant fluids were saved. Total
protein concentrations were determined using Bio Rad Protein Assay Dye Reagent Concen-
trate. Concentrated Laemmli buffer was added to the extracts and samples were heated at 85°C
for 1 min and stored frozen at -20°C. Equal amounts of total protein were loaded onto 10%
polyacrylamide gels and were subjected to SDS-PAGE in a minigel apparatus (BioRad) and
transferred using 0.05% SDS, 10% methanol in Transfer Buffer to PVDF membrane at 22 V
for 2 h in a Semi-Dry Blot apparatus (BioRad). Membranes were blocked overnight with 5%
non-fat dry milk in Tris-buffered saline (TBS) at 4°C and probed with rabbit polyclonal Iba1
antibody (Wako, 019–19741) at a dilution of 1:500 with 5% BSA in 0.05% Tween-20 in Tris-
buffered saline (TBS-T) or mouse monoclonal GFAP antibody (UC Davis/NIH NeuroMab,
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75–240) at 1:6000 for 3 h. Internal controls were performed with GAPDH antibody (Sigma
G8795) incubated at 1:8000 with 5% non-fat dry milk in TBS for 3 h. After primary antibody
incubation, membranes were washed 3 times with TBS + 0.05% Tween-20 (TBS-T) for 10 min
each wash. Secondary antibodies (goat-anti-mouse or goat anti-rabbit IgG linked to HRP)
were diluted 1:6000 (Invitrogen Zymax goat anti-mouse, 81–6520) or 1:3000 (Santa Cruz goat
anti-rabbit, L1911) with 5% non-fat milk in TBS and incubated with the washed membranes
for 2 h shaking at room temperature. Membranes were then washed 3 times again with TBS-
T as described above and antibody binding was detected with ECL plus reagent (GE) on a
C-Digit western blot scanner model 3600 (LI-COR). Bands were analyzed using the C-Digit
Image studio software according to the formula: [(band pixel intensity/area)–(background
pixel intensity/area)] / [(housekeeping band pixel intensity/area)–(background pixel intensity/
area)].

Immunofluorescence, Imaging, and 3D Renderings
Indirect immunofluorescence was used to assess morphologies of microglia and astrocytes in
LSC and to localize GFAP expression in satellite glia in DRG. Fixed OCT embedded frozen tis-
sues were cut into 25 μm thick transverse sections with a cryostat (Leica) and collected onto
Superfrost Plus microscope slides. Dry sections were immediately stored up to several days at
−20°C. Before the addition of antibody, the sections were permeabilized and blocked with 10%
goat serum (GS) in TBS with 0.6% Nonidet P40 for 1 h at room temperature. Specimens were
then probed with primary antibody overnight in 10% GS in TBS with 0.3% Nonidet P40 at 4°C.
Iba1 rabbit polyclonal and GFAP mouse monoclonal antibodies were diluted 1:400 in TBS
containing 10% goat serum. Slides were washed 3 times in TBS-T for 10 min each, and incu-
bated with fluorescently labeled goat anti-rabbit IgG (Alexa Fluor488, Molecular Probes) or
goat anti-mouse IgG (Alexa Fluor594 Molecular Probes) diluted 1:500 in 10% goat serum and
1% rat serum with 0.3% Nonidet P40 in TBS for 2 h at room temperature. Wash steps were
repeated, and the slides were dipped once in deionized water and thoroughly drained. A drop
of mounting fluid, Prolong Gold Antifade Reagent with DAPI (Molecular Probes) was placed
on each section and coverslips were mounted. The tissues were then imaged on a laser scanning
confocal microscope (Olympus Fluoview-1000). LSC Iba1 images were obtained with a 20X
dry objective for merges with dorsal horn transmitted light images. Z stacks of 25 images were
captured with a 40X 1.4 NA lens oil objective in increments of 1.25 μm, comprising 31.25 μm.
LSC and DRG GFAP images were obtained with a 60X 1.4NA objective lens, with Z stack
optical sections at intervals of 0.75 μm through the 25μm thick specimens. All images were
exported as TIFF files to Image J for processing. A Zeiss LSM 510 META-NLO Two-Photon
Laser Scanning Microscope was also used with a 100X 1.4 NA objective lens to capture high-
resolution Z-axis image stacks that were reconstructed into rotatable 3D images using the Zeiss
LSM Image Browser.

Morphological Analysis
Fractal Analysis software (FracLac ImageJ plugin) was utilized for morphological analysis as
originally described in Smith et al, J. Neurosci Methods, 1996. Z stack images of spinal cord
dorsal horns were despeckled, thresholded and binarized before being subjected to fractal anal-
ysis. The program settings used were 12 grid positions, 100 grid calibers or box sizes, minimum
sampling pixel size of 3, maximum size of sampling elements 2% of image, with horizontal
slide X = 10 pixels. Data were plotted as the log N (box counts) and log e (box scale/image
scale). DB, the fractal dimension, was determined from the slope of this plot, which is a measure
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of complexity related to the numbers of processes and their branching; where DB = -lim[log
Ni

�e/log e], Ni = ith box counting grid and e = box scale/image scale.
Iba1 stained microglia in young and middle-aged spinal cord dorsal horn z stacks were cate-

gorized according to morphologic phenotype (n = 3 animals per group, 2 LSC dorsal horn sec-
tions per LSC spaced at least 50 μm apart). Additionally total microglia were counted (n = 3
animals per group, 4 dorsal horn sections per LSC spaced at least 50 μm apart). Two categories
were defined to organize the total counts of microglia: phenotype 1 (P1) characteristics: small
cell body, numerous long processes with extensive process arborization. P1 also includes cells
that are highly ramified, with a “bushy”morphology, where processes are not as long, but had
numerous branches per process. Phenotype 2 (P2) comprised any Iba1+ microglia that did not
fit the description of P1. Their characteristics were more variable and included hypertrophic
cell body, shorter stouter processes with less extensive arborization, as well as microglia that
were elongated with a polarized distribution of processes. Microglia crossing the boundaries of
the optical fields were not counted.

Statistics
Significance of behavioral differences between sham and CCI injured animals and across ages
at a single time point were determined by Two-Way ANOVA followed by Tukey’s multiple
comparisons post-test. For comparisons to baseline behavioral measurements, Repeated Mea-
sures Two-way ANOVA was employed with Sidak’s multiple comparisons test. Two-way
ANOVA followed by Tukey’s multiple comparisons post-test was also used to examine Quanti-
gene expression differences across injury (sham vs CCI) and age (young vs middle-aged). For
age-related naive differences, student t-tests were performed with multiple comparisons FDR
adjustment of 5% [42]. Significance of differences in relative immunoblotting intensities across
age or injury was determined by student t-test with Bonferroni correction. χ2 test was used to
assess the significance of differences from expected phenotype (P1, P2) values between young
and middle-aged groups. All levels of adjusted p values for significance were p<0.05.

Results

Age-Related Changes in the Lumbar Spinal Cord and DRG
I. Expression of Neuroinflammatory Markers in Naïve LSC and DRG. To determine

whether healthy middle-aged lumbar spinal cord (LSC) and dorsal root ganglia (DRG) show
signs of inflammaging that could influence their responses to or recovery from nerve injury,
expression levels of multiple neuroinflammatory mRNA markers were measured in the healthy
young (2–3 month) and middle-aged (17 month) animals using a custom Quantigene 2.0 Mul-
tiplex assay. This assay was designed to quantify mRNA levels of cytokines and chemokines,
known to initiate, maintain or modulate central neuroinflammatory pathways including IL1β,
TNFα, IL6, IL2, IFNγ, IL10, IL4, and CCL2, as well as mRNA corresponding to cell-type mark-
ers CD2, CD3e (T-cells), CD68 (macrophages and microglia), GFAP (astrocytes/satellite cells),
CD45 (T cells and macrophages), and ATF3 (neuronal stress). Levels were measured in sam-
ples of LSC and L4-L5 DRG and normalized to the geomeans of two housekeeping genes that
did not vary significantly with age, HPRT1 and PPIB. LSC GFAP mRNA levels were beyond
the upper bounds of the linear range of our assay, whereas IL2 and IL4 levels were too low
(</ = 2 x assay background) in both LSC and DRG samples, and so were excluded.

Many of these markers were significantly elevated in the LSC of middle-aged naïve adults (Fig
1), particularly T cell and microglial/macrophage markers, ATF3 (stress), as well as TNFα, a pro-
inflammatory cytokine, and CCL2, a chemokine implicated in microglial activation and estab-
lishment of neuropathic pain [31]. Up-modulation of TGFβ1, a powerful anti-inflammatory
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immunomodulator [43], was also observed. In DRG, however, only ATF3 was elevated in middle
age (Table 1).

II. Microglial Morphology. To assess whether changes in microglial morphology, that
may reflect a pro-inflammatory phenotype, could arise in the spinal cord dorsal horn by 17
months of age, LSC from naive young and middle-aged rats were fixed in situ, frozen, sectioned
and stained with antibody to Iba1 (ionized calcium-binding adapter molecule 1, also known as
AIF1), a specific marker of microglia and macrophage activation [44]. The differences were
clear. Young naïve dorsal horn microglia had compact cell bodies with highly branched pro-
cesses; whereas middle-aged naïve microglia were typified by hypertrophic cell bodies, and

Fig 1. Neuroimmune gene expression profile in lumbar spinal cords of naïve young andmiddle-aged
rats. Expression levels were normalized to the geomean of Hprt1 and Pplb expression and the ratios
multiplied by 100. Results are presented as means +/- SD. Significance of differences between YN v MN
* p < 0.0015.

doi:10.1371/journal.pone.0134394.g001

Table 1. Gene expression Profile of Naïve Young and Middle-Aged DRG.

Gene YN Mean SD n MN Mean SD n MN/YN p value

ATF3 5.61 0.75 5 8.21 0.83 5 1.46 0.00041

CCL2 15.3 3.02 12 15.2 1.63 11 0.99 0.46567

CD2 1.97 1.05 12 1.79 0.62 11 0.91 0.30773

CD3E 1.08 0.71 5 0.94 0.23 5 0.87 0.34092

CD45 5.53 1.32 5 5.63 0.45 5 1.02 0.43584

CD68 5.69 1.75 12 4.89 0.87 11 0.86 0.09305

GFAP 14.4 10.7 5 16.0 6.24 5 1.11 0.39410

IFNγ 0.81 0.59 12 0.69 0.36 11 0.85 0.28904

IL10 3.30 2.73 5 1.87 1.38 5 0.57 0.16347

IL17a 1.41 0.71 7 1.27 0.47 6 0.90 0.34050

IL1β 0.32 0.10 12 0.32 0.06 11 1.00 0.46804

IL6 0.98 0.54 12 0.91 0.33 11 0.93 0.36072

TGFβ1 6.31 1.48 5 5.79 0.62 5 0.92 0.24515

TNFα 2.84 1.31 7 2.78 1.11 6 0.98 0.46832

Results are expressed as mean +/-SD and numbers of animals assayed per group are indicated. Bolded/italicized genes indicate significant differences.

Further statistical results and corrections for multiple comparisons are in Additional File 1. YN = young naïve, MN = middle-aged naïve.

doi:10.1371/journal.pone.0134394.t001
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shortened and thickened processes with relatively few branches (Fig 2, upper panels). The stark
differences between the two age groups are even more apparent at higher resolution (Fig 2,
lower panels—two-photon images stacks with 3-D reconstructions are displayed; see S1 and S2
Files for rotatable images.

To quantify age-related morphological changes, two categories were devised to classify
naïve dorsal horn microglia: phenotype 1 and 2 (P1, P2). P1 is characterized by small cell bod-
ies with multiple, long processes, and extensive arborizations per process, characteristics that
have been associated with “quiescent”microglia. P2 comprise any Iba1+ microglia that did not
fit the P1 description. P2 phenotypes generally showed fewer, shorter processes and significant
cytoplasmic hypertrophy characteristics typifying primed, activated and alternatively activated
microglia, but also included highly elongated cells, as well. Although such a binary classifica-
tion system simplifies the considerably more diverse functional phenotypes [6, 28, 45], it was
highly convenient for morphologic analysis. Dorsal horn microglia of middle-aged naïve LSC
were comprised of 76.2 +/- 3.5% of P2 type, whereas young naïve LSC had only 14.9 +/- 2.4%
P2 type (n = 3 naïve rats per age group; 2 independent dorsal horn fields per animal) (Fig 3,
Left). These marked changes suggest that age contributes to development of distinctive LSC
microglial morphologies in otherwise healthy animals. On the other hand, total dorsal horn

Fig 2. Iba1 immunofluorescence images of the ipsilateral dorsal horns from naïve young (YN) and
middle-aged (MN) rats rendered in 3D. Upper Panels: individual optical sections (1.25 μm intervals through
25 μm thick sections) were acquired with a LSCM and 40x 1.4 NA objective lens and then recombined and
rendered as three-dimensional images. Lower Panels: Two-photon immunofluorescence 3D renderings of
Iba1 positive dorsal horn microglia from young and middle-aged naïve (YN and MN). Image stacks (0.44 μm
optical sections through 25 μm thick specimens) were obtained using a two-photon laser scanning confocal
microscope and 100 X 1.4 NA objective lens. Each stack set was recombined to create the 3D rendering. A
single plane of the 3D image is shown for each. Scale bar = 25 μm. Rotatable 3D images are also available in
S1 and S2 Files.

doi:10.1371/journal.pone.0134394.g002
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microglial cell counts did not differ significantly between age groups: YN = 455 and MN = 481
total Iba1+ cells (n = 3 naïve rats per age group; 4 independent dorsal horn fields per animal).

Fractal analysis, an independent approach to assess morphologic complexity [46], including
that of microglia [47], was used to help quantify the age-related differences in microglial pro-
cess branching in the dorsal horn LSC images. The fractal analysis results were plotted as the
log N (box counts) and log e (box scale/image scale), which are variables related to complexity
where the slope, DB = -lim[log Ni

�e/log e], Ni = ith box counting grid and e = box scale/image
scale. Higher DB (fractal dimension) is consistent with increased numbers of processes and
their branching. Compiled results in Fig 3 (Right) show that the log ratio DB, was higher in
images of young adult microglia (~10%) compared to those in middle age. Multiple determina-
tions of DB were reproducible with non-overlapping 95% confidence intervals. These data sup-
port the differential partitioning of morphologies between young and middle-aged microglia as
discussed above.

Age-Related Changes in Neuroimmune Marker Expression and Glial
Morphology following Nerve Injury

I. CCI Induced Expression of Neuroinflammatory Markers in LSC. To address possible
age-related differences in the central neuroimmune response to nerve injury, expression levels
of neuroinflammatory mRNAmarkers were determined using the same QuantiGene 2.0 Multi-
plex assay as described above. Levels were measured in samples of LSC (hemi-sections ipsilat-
eral (IPSL) to nerve injury or sham surgery) and L4-L5 DRG (CCI or sham surgery). CCI
increased ATF3, CCL2, and IL6 mRNA levels in IPSL LSC at post-surgery day 7 compared to
age-matched sham controls in both young and middle-aged animals (Table 2); in young CCI
LSC, their up-modulation was> 3 fold. These changes are consistent with increased neuronal
stress, resulting in up-modulation of cytokines and chemokines, including CCL2, which has
been shown to activate and recruit microglia to the affected side [48].

CD45 increased significantly in young CCI LSC (~2 fold), and TGFβ1 levels trended
upwards (1.35 fold), although the differences between YS and YCCI in TGFβ1 levels did not
attain statistical significance (p = 0.0883). CD68, a specific microglial/macrophage marker,
appeared to be elevated 1.4 fold, but also did not reach significance in young adults. Middle-
aged CCI animals showed>2 fold increases in ATF3 and IL6 in LSC compared to age-matched
sham controls, as well as increases in CCL2 and CD68 that were statistically significant

Fig 3. Analyses of confocal images of Iba1+ cells in sections of lumbar spinal cord dorsal horns from
young or middle-aged naïve rats (Left) Fraction of Iba1+ lumbar microglia exhibiting P2 morphology (see
METHODS for description); data are presented as mean +/- SD, n = 3 rats per age group, and 2 independent
spinal cord sections per animal; significance of difference in proportions of P2 morphology in YN and MN is
p < 0.0001. (Right) DB is the fractal dimension, a measure of complexity related to the numbers of microglial
processes and branching; where DB = -lim[logNε/logε], Ni = ith box counting grid and � = box scale/image
scale. The non-overlapping 95% confidence intervals of the means of six DB determinations for n = 3 per age
group and 2 independent LSC sections per animal.

doi:10.1371/journal.pone.0134394.g003
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(Table 2). IL1β, TNFα and IFNγ, however, were not significantly elevated in young or older
CCI animals compared to sham controls.

Comparisons of sham controls across age revealed elevated expression of the T cell markers
CD2 and CD3e, microglial/macrophage marker CD68, and leukocyte marker CD45, in mid-
dle-aged LSC (Table 3). Similarly, increased levels of CD2, CD3e and CD68 were observed in
middle-aged CCI compared to young CCI LSC. ATF3 and CCL2 were not as highly induced by
CCI in the middle-aged animals. Taken together, these data suggest the presence of T cells and
novel microglial states in middle age LSC.

II. Neuroinflammatory Gene Expression in DRG following CCI. Of the 14 genes pro-
filed, 10 were differentially expressed after nerve injury in young L4/L5 DRG compared to age-
matched shams (Table 4). In young animals, IL6, CD68, IL1β, and CCL2 expression increased
markedly along with TNFα, CD2, ATF3, IL17a, GFAP and IFNγ. These results agree with pre-
vious studies of IL6, ATF3, and IL1β and TNFα expression in DRG following CCI [49–51].
Increases in T-cell and macrophage markers are also consistent with infiltration of young adult

Table 2. Gene Expression Profile of Young and Middle-Aged Sham and CCI LSC.

Gene YS Mean SD n YCCI Mean SD n Fold YCCI/YS p value

ATF3 1.60 0.05 4 8.79 1.68 5 5.49 0.0001

CCL2 1.30 0.30 9 4.53 1.04 9 3.49 0.0001

CD2 0.57 0.09 9 0.41 0.18 9 0.72 0.2834

CD3E 0.45 0.08 4 0.46 0.11 5 1.02 0.9991

CD45 3.65 0.63 4 7.18 1.68 5 1.97 0.0033

CD68 3.62 0.52 9 5.23 0.83 9 1.44 0.1862

IFN-γ 0.36 0.09 4 0.50 0.19 5 1.39 0.9441

IL10 1.31 0.26 4 1.38 0.69 5 1.05 0.9927

IL17a 0.38 0.12 4 0.25 0.13 5 0.66 0.9999

IL1β 0.23 0.05 9 0.31 0.13 9 1.35 0.2120

IL6 0.26 0.07 9 0.80 0.21 9 3.08 0.0001

TGFβ1* 5.94 0.52 4 8.03 2.03 5 1.35 0.0883

TNFα 0.38 0.11 4 0.45 0.05 5 1.18 0.6654

Gene MS Mean SD n MCCI Mean SD n Fold MCCI/MS p value

ATF3 2.28 0.34 5 5.98 0.44 5 2.62 0.0001

CCL2 1.93 0.37 9 3.42 1.00 10 1.77 0.0010

CD2 0.83 0.19 9 0.74 0.24 10 0.89 0.7400

CD3E 0.84 0.06 5 0.88 0.17 5 1.05 0.9470

CD45 7.05 1.05 5 8.31 1.22 5 1.18 0.3987

CD68 5.81 0.87 9 8.49 2.93 10 1.46 0.0068

IFN-γ 0.41 0.06 5 0.44 0.10 5 1.07 0.9747

IL10 1.41 0.28 5 1.42 0.17 5 1.01 0.9999

IL17a 0.30 0.07 5 0.26 0.05 5 0.87 0.9135

IL1β 0.30 0.06 9 0.26 0.09 10 0.87 0.8157

IL6 0.30 0.09 9 0.68 0.20 10 2.27 0.0001

TGFβ1 8.39 0.58 5 9.65 0.90 5 1.15 0.3811

TNFα 0.46 0.13 5 0.55 0.03 5 1.20 0.4756

LSC ipsilateral hemisections were removed on day 7. Expression levels in LSC samples were normalized to the geomean of Hprt1 and Pplb expression

and the ratios multiplied by 100 and presented as the mean ratios +/- SD. Two-way ANOVA results are shown with contrasts and associated p values.

Numbers of animals (n) assayed per group are shown. Bolded/italicized genes indicate specific contrast differences p < 0.05

* indicates difference trending to significance. YS = young sham, YCCI = young CCI, MS = middle-aged sham, MCCI = middle-aged CCI.

doi:10.1371/journal.pone.0134394.t002
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DRG after nerve injury [52]. In middle age, however, only CCL2 and IL6 were significantly ele-
vated following CCI (Table 5).

Comparisons of young and middle-aged sham control DRG suggested that CD45 and
TGFβ1 trended higher in older animals (1.61 and 1.42 fold, respectively), but these results did
not reach statistical significance (Table 6). In middle-aged CCI compared to young CCI ani-
mals, only CD68 and IL1β were significantly different, and slightly depressed (0.72 and 0.71,
respectively). Thus, older animals did not produce a robust neuroimmune response in the
DRG following nerve injury, like that seen in young adults.

Table 3. Lumbar Spinal Cord Gene Expression Comparing Sham and CCI: Effects of Age.

Gene Fold MS/YS p value Gene Fold MCCI/YCCI p value

ATF3 1.42 0.6892 ATF3 0.68 0.0011

CCL2 1.48 0.3138 CCL2 0.76 0.0178

CD2 1.47 0.0332 CD2 1.80 0.0031

CD3E 1.87 0.0007 CD3E 1.91 0.0002

CD45 1.93 0.0045 CD45 1.16 0.4927

CD68 1.60 0.0403 CD68 1.62 0.0009

IFN-γ 1.14 0.9982 IFN-γ 0.88 0.9999

IL10 1.08 0.9802 IL10 1.03 0.9993

IL17a 0.79 0.9983 IL17a 1.04 0.9640

IL1β 1.30 0.3799 IL1β 0.84 0.5967

IL6 1.15 0.9387 IL6 0.85 0.3855

TGFβ1 1.41 0.0385 TGFβ1 1.20 0.1894

TNFα 1.21 0.5129 TNFα 1.22 0.3342

LSC ipsilateral hemisections were removed on day 7. Expression levels in lumbar spinal cord were normalized to the geomean of Hprt1 and Pplb

expression and the ratios multiplied by 100 and presented as the mean ratios +/- SD. Two-way ANOVA results are shown with contrasts and associated p

values. Numbers of animals (n) assayed per group are shown. Bolded/italicized genes indicate specific contrast differences p < 0.05

* indicates difference trending to significance. Abbreviations are as in Table 2.

doi:10.1371/journal.pone.0134394.t003

Table 4. Gene Expression Profile of Young Sham and CCI DRG at Day 7.

Gene YS Mean SD n YCCI Mean SD n Fold YCCI/YS p value

ATF3 11.9 0.34 5 99.9 63.3 5 8.39 0.0304

CCL2 16.7 1.43 10 29.8 3.81 9 1.78 0.0001

CD2 0.74 0.34 10 1.49 0.87 9 2.01 0.0220

CD3E 0.58 0.56 5 0.47 0.18 5 0.81 0.9598

CD45 4.76 0.72 5 7.07 1.22 5 1.48 0.1899

CD68 3.55 0.94 10 9.24 3.51 9 2.60 0.0001

GFAP 14.4 8.04 5 30.7 9.27 5 2.13 0.0441

IFN-γ 0.20 0.15 10 0.47 0.30 9 2.35 0.0448

IL10 1.27 1.70 5 0.76 0.29 5 0.60 0.7778

IL17a 0.25 0.28 5 1.36 0.93 4 5.44 0.0320

IL1β 0.23 0.06 10 0.51 0.16 9 2.22 0.0001

IL6 0.50 0.28 10 6.23 2.79 9 12.5 0.0001

TGFβ1* 5.66 0.95 5 7.71 1.28 5 1.36 0.1226

TNFα 0.71 0.52 5 3.44 1.71 4 4.84 0.0039

doi:10.1371/journal.pone.0134394.t004
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III. Changes in Microglia, Astrocytes, and Satellite Glia following CCI. To assess
whether age affected the morphologic, and proliferative or migratory responses of microglia to
injury, LSC from CCI animals were fixed in situ, frozen, sectioned and stained with Iba1.
Microglia, stained with Iba1, accumulated in the LSC IPSL dorsal horns of young and middle-

Table 5. Gene Expression Profile of Middle-Aged Sham and CCI DRG at Day 7.

Gene MS Mean SD n MCCI Mean SD n Fold MCCI/MS p value

ATF3 32.2 31.2 5 69.8 53.7 6 2.17 0.5260

CCL2 17.4 2.51 9 34.7 7.14 10 1.99 0.0001

CD2 1.19 0.29 9 1.38 0.47 10 1.16 0.8640

CD3E 0.80 0.29 5 0.81 0.30 6 1.01 0.9999

CD45 7.69 2.44 5 6.89 1.95 6 0.90 0.8712

CD68 5.59 1.32 9 6.63 1.56 10 1.19 0.6886

GFAP 18.5 6.71 5 25.0 10.5 6 1.35 0.6285

IFN-γ 0.30 0.13 9 0.36 0.24 10 1.20 0.9351

IL10 0.54 0.24 5 0.57 0.33 6 1.06 0.9999

IL17a 0.82 0.24 4 1.17 0.39 4 1.43 0.7730

IL1β 0.28 0.10 9 0.36 0.08 10 1.29 0.3928

IL6 0.73 0.26 9 5.36 2.85 10 7.34 0.0001

TGFβ1 8.05 1.88 5 7.34 1.25 6 0.91 0.8293

TNFα 1.59 0.28 4 2.34 0.70 4 1.47 0.6843

Two-way ANOVA results (normalized as described in Table 1) of dorsal root ganglia expression levels are shown with contrasts and associated p values

and numbers of animals assayed per group. Bolded/italicized genes indicate specific contrast differences p < 0.05

* indicates difference trending to significance.

Abbreviations are as in Table 2.

doi:10.1371/journal.pone.0134394.t005

Table 6. DRGGene Expression Comparing Sham and CCI: Effects of Age.

Gene Fold MS/YS p value Gene Fold MCCI/YCCI p value

ATF3 2.71 0.8902 ATF3 0.70 0.6927

CCL2 1.04 0.9842 CCL2* 1.16 0.0862

CD2 1.61 0.2815 CD2 0.93 0.9693

CD3E 1.38 0.7717 CD3E 1.72 0.4092

CD45* 1.61 0.0691 CD45 0.97 0.9982

CD68 1.57 0.1547 CD68 0.72 0.0412

GFAP 1.29 0.8798 GFAP 0.82 0.722

IFN-γ 1.50 0.7557 IFN-γ 0.77 0.6489

IL10 0.43 0.5449 IL10 0.75 0.9853

IL17a 3.28 0.4017 IL17a 0.86 0.9526

IL1β 1.22 0.7231 IL1β 0.71 0.0209

IL6 1.46 0.9945 IL6 0.86 0.7814

TGFβ1* 1.42 0.0605 TGFβ1 0.95 0.9681

TNFα 2.24 0.5179 TNFα 0.68 0.3829

Two-way ANOVA results (normalized as described in Table 1) of dorsal root ganglia are shown with contrasts and associated p values and numbers of

animals assayed per group. Bolded/italicized genes indicate specific contrast differences p < 0.05

* indicates difference trending to significance.

Abbreviations are as in Table 2.

doi:10.1371/journal.pone.0134394.t006
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aged animals 7 days post-CCI. Both age groups showed a concentration of highly fluorescent
microglia adjacent to the most lateral aspect of the dorsal tract in the superficial dorsal horn
and towards the center (Fig 4). High-resolution two-photon image stacks of contralateral (CL)
and ipsilateral (IPSL) dorsal horn microglia from CCI animals were obtained. 3D images were
reconstructed from these stacks and are displayed in a single view plane (Fig 5; for 3D rotatable
images of dorsal horn microglia from animals subjected to CCI, see S3–S6 Files). Both young
and middle-aged CCI IPSL microglia exhibited hypertrophic cell bodies and de-ramified pro-
cesses (Fig 5, right panels) consistent with activated morphologies previously described in
nerve injured animals [28]. In the contralateral dorsal horn, MCCI microglia were noticeably
different from their young counterparts, with larger cell bodies and shorter, stouter processes
with less branching (Fig 5, middle panels). Thus, CL MCCI microglia were distinct from the
CL YCCI, but similar to the naïve middle-aged microglia described above.

To evaluate age and injury related microglial activation in the LSC, samples of IPSL LSC
from sham and CCI groups were subjected to SDS-PAGE and immunoblotted with an anti-
body to Iba1. The levels of Iba1 were calculated from the ratios of Iba1/GAPDH immunoblot
intensities. CCI induced a>2 fold increase in Iba1 levels in young animals 7 days post CCI
compared to age-matched sham controls, while middle-aged CCI animals saw no correspond-
ing increase (Fig 6A and 6B). Expression of Iba1, however, was already ~3 fold higher in the

Fig 4. Representative Iba1 immunofluorescence images of young andmiddle aged of lumbar spinal
cord dorsal horns from post-CCI day 7 animals, ipsilateral or contralateral to injury. Immunofluorescence
confocal images of the dorsal horns stained with Iba1 antibody were combined with corresponding transmitted
light images. Young (YCCI) and middle-aged (MCCI) dorsal horns ipsilateral (IPSL) to injury are compared to
the contralateral (CL) sides. Scale bars = 100 μm.

doi:10.1371/journal.pone.0134394.g004
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middle-aged sham compared to young sham controls, and Iba1 levels were also significantly
increased in middle-aged naïve LSC compared to young naïve LSC (Fig 6A and 6B). These
changes were concordant with increased expression of microglia/macrophage marker CD68

Fig 5. Iba1 immunofluorescence of the ipsilateral dorsal horns from post-CCI day 7 young (YCCI) and
middle-aged (MCCI) rats rendered in 3D. Left Panels: optical sections (1.25 μm intervals through 25 μm
thick sections) were acquired with a LSCM and 40x 1.4 NA objective lens and then recombined and rendered
as three-dimensional images. Middle and Right Panels: image stacks (0.44 μm optical sections through
25 μm thick specimens) were obtained using a two-photon laser scanning confocal microscope and 100 X
1.4 NA objective lens. Each stack set was recombined to create the 3D rendering. A single plane of the 3D
image is shown for each. Scale bar = 25 μm.

doi:10.1371/journal.pone.0134394.g005

Fig 6. Levels of Iba1 protein expression in young andmiddle-aged sham and post-CCI day 7 lumbar
spinal cords.Results were obtained for each sample (n = 3 per age group). A) immunoblots of lumbar spinal
cord hemisection samples from naïve animals (Top), and samples ipsilateral to injury (Bottom), were probed
with antibodies against the microglial marker Iba1 and house keeping enzyme GAPDH (loading control). B)
Results are expressed as the mean ratios Iba1/GAPDH intensities +/- SD; significance YN v MN
(*p = 0.0120), left panel, YS v YCCI (**p = 0.0006), YS v MS (*p = 0.0121) and MS v MCCI (p = 0.3500),
right panel.

doi:10.1371/journal.pone.0134394.g006
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and the leukocyte marker, CD45 in LSC from older animals (Fig 1). Thus, LSC expression of
Iba1 is already increased in middle-aged adults, consistent with age-related phenotypic changes
in microglia in the absence of neuropathic injury.

GFAP Protein Expression in LSC
Immunoblotting results (Fig 7A) showed no age-related differences in GFAP protein expres-
sion between naïve LSC samples nor any age or injury induced differences between IPSL LSC
samples from CCI animals compared to sham controls. Astrocytes of the IPSL dorsal horns of
both young and middle-aged CCI animals were visualized with GFAP antibody. Injury induced
the appearance of a hypertrophic, ramified morphology (Fig 7B right), typical of astrocytes fol-
lowing nerve injury [53, 54]. No significant age-related morphologic differences were observed
in contralateral sections from injured animals, nor were any age-induced changes observed in
dorsal horn sections from naïve animals (Fig 7B; and S1 Fig). The absence of injury-induced
GFAP expression is consistent with several previous studies of CCI of young adults up to post-
injury day 14 [55, 56], though another group reported increased expression by post-CCI day 7
[57]. Our data suggest that dorsal horn microglia, but not astrocytes, undergo substantial mor-
phologic/phenotypic changes by middle age, and that GFAP protein expression in astrocytes
does not necessarily accompany the establishment of pain following peripheral nerve injury.

IV. GFAP Protein Expression in Lumbar DRG. GFAP is mainly expressed in satellite
glia surrounding primary sensory neurons, although its expression has been reported only
under pathologic conditions, such as nerve injury [58–61]. Our immunoblot results (Fig 8A
Bottom) showed no significant increase in GFAP protein levels in DRG from CCI animals at

Fig 7. GFAP expression in lumbar spinal cords from young andmiddle-aged naïve (YN and MN) or
post-CCI day 7 animals (YCCI and MCCI). (A) Immunoblots of lumbar spinal cord extracts taken from naïve
hemisections or 7 days post surgery that were probed with antibody against GFAP and loading control
GAPDH (n = 3 per group). (B) GFAP immunofluorescence of dorsal horn astrocytes. Lumbar spinal cords
were obtained from young and middle-aged naïve (YN and MN) or post-CCI day 7 animals (YCCI and MCCI),
either ipsilateral (IPSL) or contralateral (CL) to injury. Optical sections (0.75 μm optical sections through
25 μm thick specimens) were acquired with a LSCM and 60x 1.4 NA objective lens, and the image stacks
were then recombined and rendered in 3D. Scale bar = 20 μm

doi:10.1371/journal.pone.0134394.g007
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day 7, yet levels were markedly elevated in DRG from older sham and CCI animals. These
increases were entirely a function of age, as similar elevations were observed in the older naïve
adults (Fig 8A Top). It should be noted that the marked effect of age on GFAP protein levels
contrasts with the unchanged levels of GFAP mRNA. A prior study had also found discordance
between levels of GFAP mRNA and GFAP protein in young adult rats [49].

Images of DRG sections stained with GFAP antibody (Fig 8 B) showed enhanced immuno-
fluorescence intensity in cells ringing the neurons in middle-aged DRG (naïve or CCI) com-
pared to those from young DRG (naïve or CCI), and are consistent with identification of these
cells as satellite glia, the principal source of GFAP expression in DRG [58]. While the age
related changes are substantial, we did not observe any CCI induced increases in GFAP expres-
sion or its localization in DRG. This contrasts with a prior study of young adult rats subjected
to CCI that showed increased GFAP immunoreactivity in satellite glia one week following CCI
[52]. Whether strain differences or degrees of nerve injury might explain the discrepancy
between our results and theirs is unclear.

Thermal and Mechanical Hyperalgesia and Cold Allodynia following CCI
Behavioral measurements were conducted just prior to surgery (day zero), and post injury
day 3, and 7 day (Fig 9). Compared to age-matched sham controls, all CCI animals had

Fig 8. GFAP protein expression in young andmiddle-aged sham or CCI or naïve DRG. (A) Immunoblots
of DRG extracts were probed with antibody against GFAP or loading control GAPDH antibody. Upper panel:
young and middle-aged naïve (YN and MN) DRG; lower panel: young and middle-aged sham (YS and MS) or
CCI (YCCI and MCCI) DRG. (B) Typical immunofluorescence confocal images of 25 μm thick sections of
DRG stained with GFAP antibody. Confocal images were acquired with a LSCM and 60 X 1.4 NA objective
lens. L4 and L5 DRG were obtained ipsilateral to injury. Scale bar = 50 μm

doi:10.1371/journal.pone.0134394.g008
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substantially reduced paw withdrawal latencies in response to radiant heat (only IPSL to
injury), reduced thresholds of paw lifting in response to static mechanical pressure, and
increased attention times to the paw following a brief cold stimulus (acetone evaporation). No
discernable differences were observed between 3 and 17 month-old rats at baseline or 7 days
post-CCI across the three response modalities (Fig 9). Similar results were obtained on day 3,

Fig 9. Evoked pain responses at post-injury day 7 in young andmiddle aged rats before or after sham
or CCI surgery.Mechanical hyperalgesia (Top), measured as threshold pressure eliciting paw withdrawal;
heat hyperalgesia (Middle), measured as latency time to hind paw withdrawal from a radiant heat source; cold
allodynia (Bottom), measured as time of attendance to the affected paw. Results are presented as means +/-
SD, n = 11 YS, YCCI, MCCI and n = 9 MS. Data were subjected to Two-Way ANOVA comparing day 7 to pre-
injury baseline and differences due to age. * p< 0.0001 comparing day 7 to baseline; there were no significant
differences related to age. Similar results were obtained on Day 3, and on Day 7 comparing ipsilateral to
contralateral hind paw responses (S2 Fig).

doi:10.1371/journal.pone.0134394.g009
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and comparing the IPSL to responses obtained on the CL side (S2 Fig). There were also no sig-
nificant age-related differences at baseline (Fig 9).

Summary of Results
Expression of mRNAmarkers, Iba1, and GFAP, and microglial morphologies are summarized
in Table 7 (spinal cord), and Table 8 (DRG). The results are presented as comparisons across
age and injury. Our data demonstrate substantial age-related differences in expression of
numerous mRNA markers, in Iba1 levels and in microglial morphology. Distinctions following
CCI in the lumbar spinal cord, however, were subtle or absent. In DRG, the principal age-asso-
ciated differences were the blunted neuroinflammatory responses following injury and consti-
tutive expression of GFAP localized to satellite glia.

Discussion
In our study, age alone increased expression of cytokine, stress, T cell and microglial markers
in LSC from sham operated and naïve middle-aged adults. In a previous study of aging spinal
cord, IL1β, Iba1, and IFNγ protein levels were increased in healthy older adults [17]. Similarly,
IL1β, TNFα, IL6, and TGFβ1 mRNA concentrations were also elevated in various regions of
the aging rat, mouse and primate brain [5–7], with microglia being a major source in the
rodent brain [62, 63]. Our results generally agree, and suggest important roles for T-cells and
microglia in establishing the neuroimmune status of the healthy middle-aged lumbar spinal
cord.

Table 7. Summary of multiplex assay results and immunofluorescence imaging of the LSC.

Comparison Neuroinflammatory mRNA Markers Iba1 Protein Levels Density Microglia P2/P1 Microglia

MN/YN +ATF3, +CCL2, +CD2, +CD3E, +CD45, +CD68, +IL6, +TNFα, +TGFβ1 +++ ~ +++

MS/YS +CD2, +CD3E, +CD45, +CD68, +TGFβ1 +++ ~ ~

MCCI/YCCI -ATF3,-CCL2, +CD2, +CD3E, +CD68 ~ ~ ~

YCCI/YS +++ATF3, +++CCL2, +CD45, +++IL6 +++ +++ +++

MCCI/MS ++ATF3, +CCL2, +CD68, +IL6 ~ +++ ~

LSC = lumbar spinal cord; MN = middle-aged naïve; YN = young naïve; MS = middle-aged sham; YS = young sham; MCCI = middle-aged CCI;

YCCI = young CCI. + sign indicates ratios significantly > 1 but < 2-fold; ++ > 2-fold but < 3; +++ > 3-fold;–sign indicates ratios significantly < 1; and ~ sign

indicates ratio ~ 1. Density of microglia refers to the dorsal horn, and for CCI, the ipsilateral side 7 days post-injury.

doi:10.1371/journal.pone.0134394.t007

Table 8. Summary of multiplex assay results and immunofluorescence imaging of the DRG.

Comparison Neuroinflammatory mRNA Markers GFAP Protein
Levels

GFAP + Satellite
Glia

MN/YN +ATF3 +++ MN only

MS/YS CD45, TGFβ1 (both trending +) +++ MS only

MCCI/YCCI -CD68,-IL6 +++ MCCI only

YCCI/YS +++ATF3, +CCL2, ++CD2, +CD45, ++CD68, ++GFAP, ++IFNG, +++IL17, ++IL1β, +++IL6,
+++TNFα

~ low ~ ND

MCCI/MS +CCL2, +++IL6 ~ high ~ detected

LSC = lumbar spinal cord; MN = middle-aged naïve; YN = young naïve; MS = middle-aged sham; YS = young sham; MCCI = middle-aged CCI;

YCCI = young CCI. + sign indicates ratio significantly > 1 but < 2-fold; ++ > 2-fold but < 3 fold; +++ > 3-fold;–sign indicates ratios significantly < 1; and ~

sign indicates ratio ~ 1. ND = not detected.

doi:10.1371/journal.pone.0134394.t008
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Differences in dorsal horn microglial morphologies between young and middle-aged ani-
mals were striking. We conclude that most dorsal horn microglia in the healthy middle-aged
LSC acquire morphologies that are atypical in younger adult spinal cord. Previous studies by
Stuesse, Kullberg and others [14, 15] have reported changes in microglial morphologies in spi-
nal cords of senescent rats, as well as increased expression of activation markers, including
Iba1, CD68 and CD11b. Increased numbers of microglia with comparable “activated”mor-
phologies were also reported for aging canine [64] and rat [14] spinal cord, facial nucleus [65],
as well as in various regions of the rodent brain [7], and in human brain samples, though pro-
cess beading and various cytoplasmic changes were also reported in the latter [66].

A recent analysis of brain microglia isolated from young and senescent adult mice, supports
the idea that microglia develop unique phenotypes with age, and has helped define the senes-
cent microglial transcriptome in brain [63]. Brain microglial senescence is associated with up-
modulation of most alternative-priming genes, down regulation of TGFβ1, and unchanged lev-
els of IL10 mRNA. Nearly half of classical priming markers were up modulated with age,
including TNF. This transcriptomic profile suggests that aging microglia may have contributed
to many of the expression changes we observed in whole spinal cord from healthy middle-aged
adults.

In our study, satellite glia, which play a critical role in the inflammatory responses to nerve
injury [58, 60], expressed high levels of GFAP in middle age, while the sensory neurons they
surround, expressed the stress marker, ATF3. These new results raise questions about the func-
tioning of satellite and microglia in older healthy adults, their interactions with nearby neu-
rons, and whether these age-related changes influence their response to injury or infection, in
particular the establishment and resolution of neuroinflammation.

We found that spinal cord inflammatory responses to CCI were similar in young and mid-
dle-aged animals at a time when heat, cold, and mechanically evoked pain responses were fully
established in both age groups. In young and middle-aged spinal cord, CCI also induced similar
changes in dorsal horn astroglial and microglial morphologies. On the other hand, DRG from
older animals showed a surprisingly blunted neuroimmune response following CCI that did
not correlate with any differential response in pain behaviors. Taken together, our results sup-
port the conclusion that a para-inflammatory state develops in the LSC and DRG by middle
age. Nonetheless, emergence of this state did not influence the establishment of neuropathic
pain. Previous studies have reported substantial delays in recovery from mechanical hyperalge-
sia following nerve injury (CCI) in senescent rats compared to young adults [24, 25]. Although
not directly addressed in humans, epidemiologic studies also suggest delayed resolution and
increased pain persistence, plateauing in middle age [37, 38]. It is possible that the age-related
para-inflammatory state we describe may be more relevant to persistence than to establishment
of neuropathic pain.

Most previous studies of aging and nociceptive responses focused on older rodent models
(rats or mice> 20 months of age). Some reported enhanced heat sensitivities in senescent rats
[67, 68], but no significant age-related differences in mechanical hyperalgesia [21] following
nerve injury; whereas, others reported diminished sensitivities in senescent compared to mid-
dle-aged and young adults subjected to nerve injury [64, 69]. Increased heat and cold sensitiv-
ity, measured by operant behaviors, have been reported in healthy aging rats and aging animals
with acute inflammatory pain [70], though no differences in evoked nociceptive responses
were observed. Interestingly, neuropathy-induced depression and loss of cognitive function are
worsened in older animals, particularly in middle age [71], supporting the idea that age-related
emotional and cognitive components influence perceived pain level and duration, an idea of
relevancy to chronic pain patients.
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Many of the neuroimmune responses in young CCI animals that we observed closely track
those of previous studies that found increased expression of ATF3, CCL2, IL6, IL1β, and
microglial activation marker CD11b in the LSC [49, 55]. As others had reported, we found no
significant change in IL10 [50, 72] or TNFαmRNA levels [51, 72] 7 days post-CCI. Surpris-
ingly, we observed no significant increases in T cell markers (with exception of CD45) in
young or middle-aged LSC following CCI. CD45, a general leukocyte marker, is known to
increase following nerve injury, but the bulk of the injury-induced expression has been attrib-
uted to activated microglia or invading macrophages [73], and not to invading T-cells. Previous
work had shown T cell invasion following CCI [40, 52] and other types of neuropathic injury
[33, 74, 75]. Results from numerous studies, using multiple independent approaches have
found an important role for T-cell invasion in development and maintenance of neuropathic
pain [76]. We did not detect increases in T cell markers following CCI in young LSC, suggest-
ing that our method of causing injury is not as severe as that of other investigators who demon-
strated T cell invasion following CCI

Elevation of T cell markers in the sham and naïve middle-aged LSC suggest invasion of the
spinal cord parenchyma by these immune cells in the absence of nerve injury. Earlier studies of
aging brain had shown increased numbers of CD3+ T-cells in.the white and gray matter of
numerous brain regions in middle-aged and senescent animals, that were undetected in young
adult tissue except within the choroid plexus and meninges [77]. Since our markers were also
of a general type, the functional phenotypes, e.g. Th1, Th2 or Treg, in the middle age spinal
cord remain to be determined. The lack of age-related changes in IL17a transcripts, however,
suggests that these T-cells do not fall into the Th17 class [78]. How T cells gain entrance to the
parenchyma is unknown, but signals from aging glia could serve as chemoattractants [79], per-
haps facilitated by increased permeability of the microvasculature [80].

Inflammatory responses in the aging spinal cord and DRG following peripheral nerve injury
differed from reports of exaggerated reactions to infection or injury of the aging brain. For
example, neuroimmune responses to LPS injection or peripheral infection [8, 81–84] or to
brain trauma [85, 86] were amplified in aging rat and mouse. Enhanced microglial proliferation
has been reported following facial nerve axotomy [65], as well. On the other hand, studies have
reported blunted neuroinflammatory responses in older animals, including: reductions in
TNF-α, IL-1β, IL-6, CCL2, CCL5, RANTES and TGFβ1 following stroke [65, 87]; curtailed
expression of equivalent markers in middle aged and senescent hippocampus following radia-
tion [88]; diminished levels of arginase, IL-1β, and CCL2 expression in spinal cord after injury
[89]; and reduced GFAP [16] and CD11b immunoreactivities [14] in senescent and middle-
aged spinal cord following CCI. This general discordance suggests that CNS location and type
of insult affect how age/injury interactions influence neuroimmune responses. Our data fit this
view.

Unlike the marked increases in levels of neuroimmune markers of the spinal cord and DRG
of young adults following nerve injury, DRG neuroimmune markers in older animals showed a
blunted or absent response. This was somewhat surprising given that neuropathic pain was
fully established when the tissues were harvested. Others have also found marked immune
related responses in the DRG following nerve injury and have suggested that these changes are
critical to the evolution of neuropathic pain [49–51, 90]. Our results in older animals suggest
other possibilities. For example, it is plausible that the inflammatory response peaked earlier in
the affected DRG of older animals or that chronic stress in the DRG neurons induced by age
alone blunted any changes in marker expression. Comparisons of naïve young and middle-
aged DRG showed increased expression of ATF3 in older animals, suggesting stress in aging
sensory neurons. Moreover, GFAP protein levels, reflecting satellite glial activation [58, 60],
were elevated in the DRG of middle-aged adults, but did not increase following CCI in either
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age group. Because young and middle age rats developed similar pain sensitivities following
CCI, these results suggest that pain development following peripheral nerve injury can be inde-
pendent of the degree of satellite glial activation or the extent of neuroinflammatory response
in the DRG. Thus, evidence of chronic stress in aging primary sensory neurons, coupled with
activation of their surrounding support cells in healthy animals could be related to the blunted
CCI-induced response in middle age DRG. Further work is needed to explore the implications
of these results, and to determine how age-induced changes in primary sensory neurons and
satellite glia in DRG, and T-cells and microglia in the LSC, influence other aspects of neuro-
pathic pain, such as pain persistence.

Supporting Information
S1 Fig. Representative GFAP immunofluorescence images of the lumbar spinal cord dorsal
horns from young (YN) and middle-aged (MN) naïve animals and 7 days post-CCI. Images
were obtained with a LSCM and a 40X 1.4 NA objective lens. We observed no age-related sig-
nificant differences in astrocyte morphology. Scale bar = 50 μm.
(TIF)

S2 Fig. (A) Evoked pain responses post-CCI day 7 in young and middle-aged rats: compari-
son of ipsilateral versus contralateral responses. CCI injury elicits sensitivity 7 days post sur-
gery in each modality (N = 11 per group) in the paw that is ipsilateral (IPSL) to injury, but not
the contralateral (CL) paw. TwoWay ANOVA � p�0.0001 shows significance of differences
between ipsilateral and contralateral paw. There were no significant differences related to age.
(B) Evoked pain responses post-CCI in young and middle-aged rats: Day 3 Post CCI Mechani-
cal, Heat, and Cold responses. CCI injury elicits sensitivity 3 days post surgery in each modality
in comparison to age-matched sham controls (N = 6 per group). TwoWay ANOVA multiple �

p�0.0001 of each condition compared sham controls. No significant age-related differences
were observed.
(TIF)

S1 File. 3D Rotating Image of Young Dorsal Horn Microglia. These combined Z stack
images, which provide a detailed view of Iba1+ microglia, typify the morphologies seen in the
young lumbar spinal cords.
(GIF)

S2 File. 3D Rotating Image of Middle-Aged Dorsal Horn Microglia. These combined Z
stack images, which provide a detailed view of Iba1+ microglia, typify the morphologies seen in
the middle-aged lumbar spinal cords.
(GIF)

S3 File. 3D Rotating Image of Young CL CCI Dorsal Horn Microglia. These combined Z
stack images, which provide a detailed view of Iba1+ microglia, typify the morphologies seen in
the middle-aged lumbar spinal cords.
(GIF)

S4 File. 3D Rotating Image of Young IPSL CCI Dorsal Horn Microglia. These combined Z
stack images, which provide a detailed view of Iba1+ microglia, typify the morphologies seen in
the middle-aged lumbar spinal cords.
(GIF)

S5 File. 3D Rotating Image of Middle-aged CL CCI Dorsal Horn Microglia. These
combined Z stack images, which provide a detailed view of Iba1+ microglia, typify the
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morphologies seen in the middle-aged lumbar spinal cords.
(GIF)

S6 File. 3D Rotating Image of Middle-aged IPSL CCI Dorsal Horn Microglia. These com-
bined Z stack images, which provide a detailed view of Iba1+ microglia, typify the morpholo-
gies seen in the middle-aged lumbar spinal cords.
(GIF)
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