2,227 research outputs found

    Fottiti amico

    Get PDF
    Perché traduzione dell'immagine? Perché lo spettatore straniero è in effetti costretto ad operare una traduzione mentale delle immagini che scorrono sullo schermo. Lo spettatore italiano di un film americano non doppiato non vede esattamente un film in versione originale: è costretto, in realtà, a tradurre mentalmente le immagini che percepisce. Noi qui ci occupiamo in particolare del processo traduttivo della colonna sonora. Parlo volutamente di traduzione della colonna sonora perché mi piacerebbe, come professionista del doppiaggio cinetelevisivo, offrire uno spunto di riflessione ai professionisti della ricerca

    GRBs and the thermalization process of electron-positron plasmas

    Full text link
    We discuss the temporal evolution of the pair plasma created in Gamma-Ray Burst sources. A particular attention is paid to the relaxation of the plasma into thermal equilibrium. We also discuss the connection between the dynamics of expansion and the spatial geometry of the plasma. The role of the baryonic loading parameter is emphasized.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007" meeting, November 5-9, 2007, Santa Fe, New Mexico, US

    Empirical mode decomposition of long-term polar motion observation

    Get PDF
    We use the Empirical Mode Decomposition (EMD) method to study the decadal variations in polar motion and its long-term trend since year 1900. The existence of the so-called “Markowitz wobble”, a multidecadal fluctuation of the mean pole of rotation whose nature has long been debated since its discovery in 1960, is confirmed. In the EMD approach, the Markowitz wobble naturally arises as an empirical oscillatory term in polar motion, showing significant amplitude variations and a period of approximately 3 decades. The path of the time-averaged, non-cyclic component of polar motion matches the results of previous investigations based on classical spectral methods. However, our analysis also reveals previously unnoticed steep variations (change points) in the rate and the direction of secular polar motion

    Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment

    Get PDF
    Observations from the global array of tide gauges show that global sealevel has been rising at an average rate of 1.5-2 mm/yr during the last ~150 years [Douglas 1991, Spada and Galassi 2012]. Although a global sea-level acceleration was initially ruled out [Douglas 1992], subsequent studies [Douglas 1997, Church and White 2006, Jevrejeva et al. 2008, Church and White 2011] have coherently proposed values of ~1 mm/year/century [Olivieri and Spada 2013]. More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, these could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise [Gehrels and Woodworth 2013], while locally they result from ocean circulation anomalies, steric effects and wind stress [Bromirski et al. 2011, Merrifield 2011]. Although isostatic readjustment affects the local rates of secular sea-level change [Milne and Mitrovica 1998, Peltier 2004], a possible impact on regional acceleration has been so far discounted [Douglas 1992, Jevrejeva et al. 2008, Woodworth et al. 2009] since the process evolves on a millennium time scale [Turcotte and Schubert 2002]. Here we report a previously unnoticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration

    Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane

    Full text link
    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We first derive the general multimode Hamiltonian describing the radiation pressure interaction between the cavity modes and the vibrational modes of the membrane. We then restrict the analysis to the standard case of a single cavity mode interacting with a single mechanical resonator and we determine to what extent optical absorption by the membrane hinder reaching a quantum regime for the cavity-membrane system. We show that membrane absorption does not pose serious limitations and that one can simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.Comment: 14 pages, 7 figure

    Efficient algorithms for rigid body integration using optimized splitting methods and exact free rotational motion

    Full text link
    Hamiltonian splitting methods are an established technique to derive stable and accurate integration schemes in molecular dynamics, in which additional accuracy can be gained using force gradients. For rigid bodies, a tradition exists in the literature to further split up the kinetic part of the Hamiltonian, which lowers the accuracy. The goal of this note is to comment on the best combination of optimized splitting and gradient methods that avoids splitting the kinetic energy. These schemes are generally applicable, but the optimal scheme depends on the desired level of accuracy. For simulations of liquid water it is found that the velocity Verlet scheme is only optimal for crude simulations with accuracies larger than 1.5%, while surprisingly a modified Verlet scheme (HOA) is optimal up to accuracies of 0.4% and a fourth order gradient scheme (GIER4) is optimal for even higher accuracies.Comment: 2 pages, 1 figure. Added clarifying comments. Accepted for publication in the Journal of Chemical Physic

    Switchable Genetic Oscillator Operating in Quasi-Stable Mode

    Get PDF
    Ring topologies of repressing genes have qualitatively different long-term dynamics if the number of genes is odd (they oscillate) or even (they exhibit bistability). However, these attractors may not fully explain the observed behavior in transient and stochastic environments such as the cell. We show here that even repressilators possess quasi-stable, travelling-wave periodic solutions that are reachable, long-lived and robust to parameter changes. These solutions underlie the sustained oscillations observed in even rings in the stochastic regime, even if these circuits are expected to behave as switches. The existence of such solutions can also be exploited for control purposes: operation of the system around the quasi-stable orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate these ideas with a simple protocol based on optical interference that can induce oscillations robustly both in the stochastic and deterministic regimes.Comment: 24 pages, 5 main figure

    Dispersion analysis of the nucleon form factors including meson continua

    Get PDF
    Dispersion relations provide a powerful tool to analyse the electromagnetic form factors of the nucleon for all momentum transfers. Constraints from meson-nucleon scattering data, unitarity, and perturbative QCD can be included in a straightforward way. In particular, we include the 2pi, rho-pi, and KKbar continua as independent input in our analysis and provide an error band for our results. Moreover, we discuss two different methods to include the asymptotic constraints from perturbative QCD. We simultaneously analyze the world data for all four form factors in both the space-like and time-like regions and generally find good agreement with the data. We also extract the nucleon radii and the omega-NN coupling constants. For the radii, we generally find good agreement with other determinations with the exception of the electric charge radius of the proton which comes out smaller. The omega-NN vector coupling constant is determined relatively well by the fits, but for the tensor coupling constant even the sign can not be determined.Comment: 24 pages, 9 figure

    Effect of beet pulp on growing performance, digestibility, N balance, and ammonia emission in the heavy pig

    Get PDF
    A relevant aspect of pig farm units concerning the environmental impact is the ammonia emission from slurries, which is detrimental for animal (and sometimes also for human) welfare. This emission is co-responsible for acid rains, for the increase of bad smells and is detrimental for the respiratory apparatus (Portejoie et al., 2002)
    corecore