192 research outputs found

    Intercropping of Faba Bean with Barley at Various Spatial Arrangements Affects Dry Matter and N Yield, Nitrogen Nutrition Index, and Interspecific Competition

    Get PDF
    Intercropping is the cultivation of two or more crop species on the same area of land, and can improve yield, forage quality, and soil health. Despite the fact that intercropping is an old practice, it received significant attention the last years because of the environmental impact that it has. However, the effect of the various spatial arrangements of the different species that are used in an intercropping system was not determined. The objective of the present study was to study the yield, growth and nitrogen (N) uptake rate, N nutrition index (NNI) of barley, interspecific competition, quality and financial outcome of intercrops of faba bean (Vicia faba L. var. equina) and barley (Hordeum vulgare L.) with various spatial arrangements (1:1, 2:2, 2:1 alternate rows, and mixed in the same row). The land equivalent ratio (LER), relative crowding coefficient (K), actual yield loss (AYL) and system productivity index (SPI) values were greater for the FB:B intercrop of 2:1, indicating the advantage of intercropping in terms of dry matter and N yield. Sole cropping of barley showed a reduction in NNI by 7 %, whereas NNI for barley increased by an average of 14% in intercropping treatments. Based on biomass production and the competition indices for dry matter and N yield, and NNI the FB:B intercrop of 2:1 was more advantageous than faba bean and barley monocrops, as well as the other intercropping treatments that were tested

    Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative

    Get PDF
    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent videoâ\u80\u93electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals

    Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability

    Get PDF
    Background: The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostability, either by SCHEMA, a structure-guided, site-directed protein recombination method, or by consensus-guided mutagenesis combined with random mutagenesis using error-prone PCR, respectively. A thermostable β-glucosidase BglA mutant was also selected from a library generated by error-prone PCR that will assist the two cellulases in their methodic deconstruction of crystalline cellulose. The effects of a thermostable scaffoldin versus those of a largely mesophilic scaffoldin were also examined. By improving the stability of the enzyme subunits and the structural component, we aimed to improve cellulosome-mediated deconstruction of cellulosic substrates. Results: The results demonstrate that the combination of thermostable enzymes as free enzymes and a thermostable scaffoldin was more active on the cellulosic substrate than the wild-type enzymes. Significantly, “thermostable” designer cellulosomes exhibited a 1.7-fold enhancement in cellulose degradation compared to the action of conventional designer cellulosomes that contain the respective wild-type enzymes. For designer cellulosome formats, the use of the thermostabilized scaffoldin proved critical for enhanced enzymatic performance under conditions of high temperatures. Conclusions: Simple improvement in the activity of a given enzyme does not guarantee its suitability for use in an enzyme cocktail or as a designer cellulosome component. The true merit of improvement resides in its ultimate contribution to synergistic action, which can only be determined experimentally. The relevance of the mutated thermostable enzymes employed in this study as components in multienzyme systems has thus been confirmed using designer cellulosome technology. Enzyme integration via a thermostable scaffoldin is critical to the ultimate stability of the complex at higher temperatures. Engineering of thermostable cellulases and additional lignocellulosic enzymes may prove a determinant parameter for development of state-of-the-art designer cellulosomes for their employment in the conversion of cellulosic biomass to soluble sugars

    Big data in epilepsy: Clinical and research considerations. Report from the Epilepsy Big Data Task Force of the International League Against Epilepsy

    Get PDF
    Epilepsy is a heterogeneous condition with disparate etiologies and phenotypic and genotypic characteristics. Clinical and research aspects are accordingly varied, ranging from epidemiological to molecular, spanning clinical trials and outcomes, gene and drug discovery, imaging, electroencephalography, pathology, epilepsy surgery, digital technologies, and numerous others. Epilepsy data are collected in the terabytes and petabytes, pushing the limits of current capabilities. Modern computing firepower and advances in machine and deep learning, pioneered in other diseases, open up exciting possibilities for epilepsy too. However, without carefully designed approaches to acquiring, standardizing, curating, and making available such data, there is a risk of failure. Thus, careful construction of relevant ontologies, with intimate stakeholder inputs, provides the requisite scaffolding for more ambitious big data undertakings, such as an epilepsy data commons. In this review, we assess the clinical and research epilepsy landscapes in the big data arena, current challenges, and future directions, and make the case for a systematic approach to epilepsy big data

    COAST (Cisplatin ototoxicity attenuated by aspirin trial): A phase II double-blind, randomised controlled trial to establish if aspirin reduces cisplatin induced hearing-loss

    Get PDF
    Background: Cisplatin is one of the most ototoxic chemotherapy drugs, resulting in a permanent and irreversible hearing loss in up to 50% of patients. Cisplatin and gentamicin are thought to damage hearing through a common mechanism, involving reactive oxygen species in the inner ear. Aspirin has been shown to minimise gentamicin-induced ototoxicity. We, therefore, tested the hypothesis that aspirin could also reduce ototoxicity from cisplatin-based chemotherapy. Methods: A total of 94 patients receiving cisplatin-based chemotherapy for multiple cancer types were recruited into a phase II, double-blind, placebo-controlled trial and randomised in a ratio of 1:1 to receive aspirin 975 mg tid and omeprazole 20 mg od, or matched placebos from the day before, to 2 days after, their cisplatin dose(s), for each treatment cycle. Patients underwent pure tone audiometry before and at 7 and 90 days after their final cisplatin dose. The primary end-point was combined hearing loss (cHL), the summed hearing loss at 6 kHz and 8 kHz, in both ears. Results: Although aspirin was well tolerated, it did not protect hearing in patients receiving cisplatin (p-value = 0.233, 20% one-sided level of significance). In the aspirin arm, patients demonstrated mean cHL of 49 dB (standard deviation [SD] 61.41) following cisplatin compared with placebo patients who demonstrated mean cHL of 36 dB (SD 50.85). Women had greater average hearing loss than men, and patients treated for head and neck malignancy experienced the greatest cHL. Conclusions: Aspirin did not protect from cisplatin-related ototoxicity. Cisplatin and gentamicin may therefore have distinct ototoxic mechanisms, or cisplatin-induced ototoxicity may be refractory to the aspirin regimen used here

    Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability

    Get PDF
    Background: The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostability, either by SCHEMA, a structure-guided, site-directed protein recombination method, or by consensus-guided mutagenesis combined with random mutagenesis using error-prone PCR, respectively. A thermostable β-glucosidase BglA mutant was also selected from a library generated by error-prone PCR that will assist the two cellulases in their methodic deconstruction of crystalline cellulose. The effects of a thermostable scaffoldin versus those of a largely mesophilic scaffoldin were also examined. By improving the stability of the enzyme subunits and the structural component, we aimed to improve cellulosome-mediated deconstruction of cellulosic substrates. Results: The results demonstrate that the combination of thermostable enzymes as free enzymes and a thermostable scaffoldin was more active on the cellulosic substrate than the wild-type enzymes. Significantly, “thermostable” designer cellulosomes exhibited a 1.7-fold enhancement in cellulose degradation compared to the action of conventional designer cellulosomes that contain the respective wild-type enzymes. For designer cellulosome formats, the use of the thermostabilized scaffoldin proved critical for enhanced enzymatic performance under conditions of high temperatures. Conclusions: Simple improvement in the activity of a given enzyme does not guarantee its suitability for use in an enzyme cocktail or as a designer cellulosome component. The true merit of improvement resides in its ultimate contribution to synergistic action, which can only be determined experimentally. The relevance of the mutated thermostable enzymes employed in this study as components in multienzyme systems has thus been confirmed using designer cellulosome technology. Enzyme integration via a thermostable scaffoldin is critical to the ultimate stability of the complex at higher temperatures. Engineering of thermostable cellulases and additional lignocellulosic enzymes may prove a determinant parameter for development of state-of-the-art designer cellulosomes for their employment in the conversion of cellulosic biomass to soluble sugars

    Creation of a functional hyperthermostable designer cellulosome

    Get PDF
    Background: Renewable energy has become a field of high interest over the past decade, and production of biofuels from cellulosic substrates has a particularly high potential as an alternative source of energy. Industrial deconstruction of biomass, however, is an onerous, exothermic process, the cost of which could be decreased significantly by use of hyperthermophilic enzymes. An efficient way of breaking down cellulosic substrates can also be achieved by highly efficient enzymatic complexes called cellulosomes. The modular architecture of these multi-enzyme complexes results in substrate targeting and proximity-based synergy among the resident enzymes. However, cellulosomes have not been observed in hyperthermophilic bacteria. Results: Here, we report the design and function of a novel hyperthermostable “designer cellulosome” system, which is stable and active at 75 °C. Enzymes from Caldicellulosiruptor bescii, a highly cellulolytic hyperthermophilic anaerobic bacterium, were selected and successfully converted to the cellulosomal mode by grafting onto them divergent dockerin modules that can be inserted in a precise manner into a thermostable chimaeric scaffoldin by virtue of their matching cohesins. Three pairs of cohesins and dockerins, selected from thermophilic microbes, were examined for their stability at extreme temperatures and were determined stable at 75 °C for at least 72 h. The resultant hyperthermostable cellulosome complex exhibited the highest levels of enzymatic activity on microcrystalline cellulose at 75 °C, compared to those of previously reported designer cellulosome systems and the native cellulosome from Clostridium thermocellum. Conclusion: The functional hyperthermophilic platform fulfills the appropriate physico-chemical properties required for exothermic processes. This system can thus be adapted for other types of thermostable enzyme systems and could serve as a basis for a variety of cellulolytic and non-cellulolytic industrial objectives at high temperatures
    corecore