21 research outputs found

    Divergent roles of Smad3 and PI3-kinase in murine adriamycin nephropathy indicate distinct mechanisms of proteinuria and fibrogenesis

    Get PDF
    Multiple transforming growth factor (TGF)-β-induced fibrogenic signals have been described in vitro. To evaluate mechanisms in vivo, we used an adriamycin nephropathy model in 129x1/Svj mice that display massive proteinuria by day 5 to7 and pathological findings similar to human focal segmental glomerulosclerosis by day 14. TGF-β mRNA expression increased after day 7 along with nuclear translocation of the TGF-β receptor-specific transcription factor Smad3. Inhibiting TGF-β prevented both pathological changes and type-I collagen and fibronectin mRNA expression, but proteinuria persisted. Renal Akt was phosphorylated in adriamycin-treated mice, suggesting PI3-kinase activation. Expression of mRNA for the p110γ isozyme of PI3-kinase was specifically increased and p110γ colocalized with nephrin by immunohistochemistry early in disease. Nephrin levels subsequently decreased. Inhibition of p110γ by AS605240 preserved nephrin expression and prevented proteinuria. In cultured podocytes, adriamycin stimulated p110γ expression. AS605240, but not a TGF-β receptor kinase inhibitor, prevented adriamycin-induced cytoskeletal disorganization and apoptosis, supporting a role for p110γ in podocyte injury. AS605240, at a dose that decreased proteinuria, prevented renal collagen mRNA expression in vivo but did not affect TGF-β-stimulated collagen induction in vitro. Thus, PI3-kinase p110γ mediates initial podocyte injury and proteinuria, both of which precede TGF-β-mediated glomerular scarring

    Applicability of estimating glomerular filtration rate equations in pediatric patients: comparison with a measured glomerular filtration rate by iohexol clearance

    Get PDF
    Estimating glomerular filtration rate (eGFR) has become popular in clinical medicine as an alternative to measured GFR (mGFR), but there are few studies comparing them in clinical practice. We determined mGFR by iohexol clearance in 81 consecutive children in routine practice and calculated eGFR from 14 standard equations using serum creatinine, cystatin C, and urea nitrogen that were collected at the time of the mGFR procedure. Nonparametric Wilcoxon test, Spearman correlation, Bland-Altman analysis, bias (median difference), and accuracy (P15, P30) were used to compare mGFR with eGFR. For the entire study group, the mGFR was 77.9 ± 38.8 mL/min/1.73 m2. Eight of the 14 estimating equations demonstrated values without a significant difference from the mGFR value and demonstrated a lower bias in Bland-Altman analysis. Three of these 8 equations based on a combination of creatinine and cystatin C (Schwartz et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 2009;20:629–37; Schwartz et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 2012;82:445–53; Chehade et al. New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol 2014;9:54–63) had the highest accuracy with approximately 60% of P15 and 80% of P30. In 10 patients with a single kidney, 7 with kidney transplant, and 11 additional children with short stature, values of the 3 equations had low bias and no significant difference when compared with mGFR. In conclusion, the 3 equations that used cystatin C, creatinine, and growth parameters performed in a superior manner over univariate equations based on either creatinine or cystatin C and also had good applicability in specific pediatric patients with single kidneys, those with a kidney transplant, and short stature. Thus, we suggest that eGFR calculations in pediatric clinical practice use only a multivariate equation

    Does History of Prematurity Prompt Blood Pressure Evaluations at Primary Care Visits?

    No full text
    Prematurity is a risk factor for elevated blood pressure (BP). We performed a mixed-methods study of care patterns and awareness of early BP screening recommendations for infants born prematurely (IBP) by interviewing/surveying providers on practice- and provider-level BP screening. IBP’s records were reviewed for BP screening documentation, demographics, and gestational age (GA). Visits <33 months were reviewed for anthropometrics, BP, and comorbidities. Chi-square analysis evaluated BP screening by GA and comorbidities. Twenty-six of 49 practices completed interviews; 81% had infant BP equipment available; 4% had BP measurement protocol for IBP. Twenty-eight of 86 providers were aware of screening guidelines; none reported routine assessment. Twenty-eight of 118 IBP had ≥1 BP documented; 43% had BP ≥90th percentile. Screening did not differ by GA group. Kidney-related diagnosis was associated with more frequent BP screening ( P = .0454). BP is not routinely measured though often elevated before age 3 in IBP

    Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ

    Get PDF
    A consanguineous Israeli Bedouin kindred presented with an autosomal-recessive nonlethal phenotype of severe psychomotor retardation and extrapyramidal signs, dystonia, athetosis and ataxia, mild axial hypotonia, and marked global dementia with defects in verbal and expressive communication skills. Metabolic workup was normal except for mildly elevated blood lactate levels. Brain magnetic resonance imaging (MRI) showed increased density in the putamen, with decreased density and size of the caudate and lentiform nuclei. Reduced activity specifically of mitochondrial complex III and variable decrease in complex I activity were evident in muscle biopsies. Homozygosity of affected individuals to UQCRB and to BCSIL, previously associated with isolated complex III deficiency, was ruled out. Genome-wide linkage analysis identified a homozygosity locus of approximately 9 cM on chromosome 5q31 that was further narrowed down to 2.14 cM, harboring 30 genes (logarithm of the odds [LOD] score 8.82 at θ = 0). All 30 genes were sequenced, revealing a single missense (p.Ser45Phe) mutation in UQCRQ (encoding ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5 kDa), one of the ten nuclear genes encoding proteins of mitochondrial complex III

    Maternally Inherited Birk Barel Mental Retardation Dysmorphism Syndrome Caused by a Mutation in the Genomically Imprinted Potassium Channel KCNK9

    Get PDF
    We describe a maternally transmitted genomic-imprinting syndrome of mental retardation, hypotonia, and unique dysmorphism with elongated face. We mapped the disease-associated locus to ∼7.27 Mb on chromosome 8q24 and demonstrated that the disease is caused by a missense mutation in the maternal copy of KCNK9 within this locus. KCNK9 is maternally transmitted (imprinted with paternal silencing) and encodes K2P9.1, a member of the two pore-domain potassium channel (K2P) subfamily. The mutation fully abolishes the channel's currents—both when functioning as a homodimer or as a heterodimer with K2P3.1
    corecore